Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How much biomass grows in the savannah?

16.02.2017

Geographers at Jena University use satellite and terrestrial data to calculate aboveground biomass in South Africa’s Kruger National Park

Savannahs form one of the largest habitats in the world, covering around one-fifth of the Earth’s land area. They are mainly to be found in sub-Saharan Africa. Savannahs are home not only to unique wildlife, including the ‘Big Five’ – the African elephant, rhinoceros, Cape buffalo, leopard and lion – but also to thousands of endemic plant species such as the baobab, or monkey bread tree.


Victor Odipo, doctoral candidate at Jena University, and colleagues have succeeded in establishing a methodology that enables them to measure the aboveground biomass of the savannahs.

Photo: Anne Guenther/FSU

“What’s more, the savannahs play a significant role in the global carbon cycle and therefore affect the planet’s climate cycles,” says Victor Odipo of Friedrich Schiller University, Jena (Germany). The ability of the savannahs to store the greenhouse gas carbon dioxide is ultimately determined by the amount of aboveground woody biomass, adds Odipo, a doctoral candidate at the Institute of Geography’s Remote Sensing section.

So far, though, it has been difficult to measure this important indicator, with current climate models relying on rough carbon estimates. However, a team of geographers from the universities of Jena and Oxford, and from Germany’s Federal Institute for Geosciences and Natural Resources, has now succeeded in establishing a methodology that enables them to measure the aboveground biomass of the savannahs and record even minor changes in the ecosystem. They have presented their results in the specialist journal ‘Forests’ (DOI: 10.3390/f7120294).

Three-dimensional model of the landscape

The researchers from the University of Jena use both radar data recorded by satellites and laser scanning data collected from the ground. “Radar data can record the biomass over larger geographical areas, given its coverage, but it provides insufficient information about the structure of the vegetation at localised scales,” explains Victor Odipo. Typical of the savannah is its patchwork-like structure: a mixture of grass and shrubs with trees of very different heights, either standing alone or in patches.

In order to make a detailed record of this structure and be able to convert it into biomass, the satellite data is complemented by ground-based measurements. For this purpose, a terrestrial laser scanner (TLS) is used, which scans its surroundings with a laser beam within a radius of several hundred metres. “This provides us with a comprehensive three-dimensional digital model of the landscape, which enables a precise analysis of the vegetation structure,” says Jussi Baade, associate professor of Physical Geography at the University of Jena.

After exhaustive initial tests in the Stadtrodaer Forest and the slopes of the Saale valley near Jena, the researchers have now applied their methodology to the savannah of Kruger National Park in South Africa. In an area of some nine square kilometres for which radar satellite data is available, they collected laser scanning data from more than 40 plots, and integrated this data into a model for calculating the biomass.

“The laser scanning data collected from selected points does give significantly more precise results than the satellite radar,” notes Christian Berger, co-author of the study and head of the research project on which Victor Odipo’s doctoral thesis is based. “But on its own, and due to smaller coverage compared with airborne data, this method is not suitable for investigating large areas.” As this study shows, however, combining the two methods allows estimation of biomass with a range of 2.9 tonnes per hectare in areas of grass and shrubs to 101.6 tonnes per hectare in areas with trees.

Monitoring changes in the ecosystem

These results cannot be used to create new climate models. “We also need reliable data to monitor changes in the savannah ecosystem,” says Victor Odipo. He points to a surprising incidental find: the researchers’ measurements showed that the biomass of a substantial part of the study area in Kruger National Park is declining from year to year. “We didn’t expect that,” says Odipo, “given that this is a nature reserve.” It turned out, however, that these changes – unlike those in most unprotected areas – were not primarily the result of human activity, but rather the work of elephants, which bring down a large number of trees.

This study was supported by the German Academic Exchange Service (DAAD), the German Research Foundation (DFG), and the Federal Ministry of Education and Research (BMBF). The terrestrial laser scanner was acquired with the help of EFRD funds from the Free State of Thuringia.

Original publication:
Odipo VO et al. Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna, Forests; DOI:10.3390/f7120294

Contact:
Victor Odipo, Prof. Christiane Schmullius
Institute of Geography of Friedrich Schiller University, Jena
Grietgasse 6, 07743 Jena, Germany
Phone: +49 (0)3641 / 948895, +49 (0)3641 / 948880
E-mail: victor.onyango[at]uni-jena.de, c.schmullius[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>