Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does snow affect the amount of water in rivers?

19.05.2014

New research has shown for the first time that the amount of water flowing through rivers in snow-affected regions depends significantly on how much of the precipitation falls as snowfall. This means in a warming climate, if less of the precipitation falls as snow, rivers will discharge less water than they currently do.

The study by PhD student Wouter Berghuijs and Dr Ross Woods, Senior Lecturer in Water and Environmental Engineering in the Department of Civil Engineering at the University of Bristol together with a colleague from Delft University of Technology is published online in Nature Climate Change.

The researchers, using historical data from several hundred river basins located across the United States, investigated the effect of snow on the amount of water that rivers discharge.

How river flow is generated in snowy areas is poorly understood due to the difficulty in getting appropriate measurements. Previous studies have mostly focused on the role of snowfall for the within-year distribution of streamflow - how much water is there in the river during a particular period of the year - and assumed that there was no important effect of snow on the average streamflow. This study is the first to focus on the role of snow for how much water is on average available in rivers.

With data from 420 catchments located throughout the United States the researchers show that snowiness is an important factor for the average river discharge.

Global warming is very likely to reduce the amount of snow significantly in snow-affected catchments, even if temperatures rise only two degrees Celsius. The new research suggests that the amount of water in rivers will be reduced as a result of the decrease in snow.

The authors of the study said: "With more than one-sixth of the Earth's population depending on meltwater for their water supply, and ecosystems that can be sensitive to streamflow alterations, the socio-economic consequences of a reduction in streamflow can be substantial.

"Our finding is particularly relevant to regions where societally important functions, such ecosystem stability, hydropower, irrigation, and industrial or domestic water supply are derived from snowmelt."

Given this importance of streamflow for society, the researchers propose that further studies are required to respond to the consequences of a temperature-induced precipitation shift from snow to rain.

###

Paper: A precipitation shift from snow towards rain leads to a decrease in streamflow, W. R. Berghuijs, R. A.Woods and M. Hrachowitz, Nature Climate Change, Vol 4, June 2014.

Notes to editors:

About Nature Climate Change

Nature Climate Change is a monthly journal dedicated to publishing cutting-edge research on the science of climate change, its impacts and wider implications for the economy, society and policy and is currently ranked as the top journal in environmental research.

Joanne Fryer | Eurek Alert!
Further information:
http://www.bristol.ac.uk

Further reports about: Bristol Change Climate Engineering Nature alterations ecosystems implications precipitation snowmelt

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>