Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High pressure experiments reproduce mineral structures 1,800 miles deep

24.09.2010
Crystal structure of post-perovskite explains anisotropic seismic wave propagation

University of California, Berkeley, and Yale University scientists have recreated the tremendous pressures and high temperatures deep in the Earth to resolve a long-standing puzzle: why some seismic waves travel faster than others through the boundary between the solid mantle and fluid outer core.

Below the earth's crust stretches an approximately 1,800-mile-thick mantle composed mostly of a mineral called magnesium silicate perovskite (MgSiO3). Below this depth, the pressures are so high that perovskite is compressed into a phase known as post-perovskite, which comprises a layer 125 miles thick at the core-mantle boundary. Below that lies the earth's iron-nickel core.

Understanding the physics of post-perovskite, and therefore the physics of the core-mantle boundary, has proven tough because of the difficulty of recreating the extreme pressure and temperature at such depths.

The researchers, led by Yale post-doctoral fellow Lowell Miyagi, a former UC Berkeley graduate student, used a diamond-anvil cell to compress an MgSiO3 glass to nearly 1.4 million times atmospheric pressure and heated it to 3,500 Kelvin (more than 3,000 degrees Celsius, or nearly 6,000 degrees Fahrenheit) to create a tiny rock of post-perovskite. They then further compressed this to 2 million times atmospheric pressure and zapped the substance with an intense X-ray beam from the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory to obtain a diffraction picture that reveals the deformation behavior of post-perovskite.

They found that the orientation of post-perovskite's crystals in the deformed rock allowed some seismic waves – those polarized parallel to the core-mantle boundary – to travel faster than those polarized perpendicular to it. This anisotropic structure may explain the observations of seismologists using seismic waves to probe the earth's interior.

"For the first time, we can use mineral physics with diamond-anvil cells at the ALS to get information about how this mineral, post-perovskite, performs under intense pressure," said co-author Hans-Rudolf Wenk, a Professor of the Graduate School in UC Berkeley's Department of Earth and Planetary Science and Miyagi's Ph.D. thesis advisor. "People had suggested this as an explanation for the anisotropy, but now we have experimental evidence."

"Understanding how post-perovskite behaves is a good start to understanding what's happening near the mantle's lower reaches," Miyagi said. "We can now begin to interpret flow patterns in this deep layer in the earth."

The study, which appears in the Sept. 24 issue of the journal Science, has important implications for understanding how the earth's internal heating and cooling processes work.

"This will give seismologists confidence in their models by matching what these observations predict with the seismic data they get," said coauthor Waruntorn "Jane" Kanitpanyacharoen, a UC Berkeley graduate student.

Post-perovskite was first recognized as a high-pressure phase in the mantle in 2004, and subsequent experiments in diamond-anvil cells have produced the mineral. Wenk and his colleagues in 2007 conducted experiments that they thought had determined the deformation behavior of post-perovskite, but which now appear to have been related to the phase transformation to post-perovskite. This transition takes place at about 1,300,000 times atmospheric pressure (127 gigaPascals) and 2,500 Kelvin (4,000 degrees Fahrenheit).

The current experiment showed that post-perovskite's crystal structure is deformed by pressure into a more elongated shape. Because seismic waves travel faster in the stretched direction, this matches the observed difference in velocity between seismic waves polarized horizontally and vertically traveling through the post-perovskite zone above the earth's core.

If scientists can gain a better understanding of the core-mantle boundary's behavior, it will give them clues as to how Earth's internal convection works there, where cool tectonic plates descend from the ocean floor through the mantle eventually nearing the dense, liquid-iron outer core, heat up, and begin moving upward again in a repeated cycle that mixes material and heat through the mantle.

Other authors of the paper include UC Berkeley researcher Pamela Kaercher and Kanani K. M. Lee, assistant professor of geology and geophysics at Yale.

The work was funded by the National Science Foundation, with support for the ALS from the U.S. Department of Energy.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>