Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hazy shades of life on early Earth

19.03.2012
A 'see-sawing' atmosphere over 2.5 billion years ago preceded the oxygenation of our planet and the development of complex life on Earth, a new study has shown.
Research, led by experts at Newcastle University, UK, and published today in the journal Nature Geoscience, reveals that the Earth's early atmosphere periodically flipped from a hydrocarbon-free state into a hydrocarbon-rich state similar to that of Saturn's moon, Titan.

This switch between "organic haze" and a "haze-free" environment was the result of intense microbial activity and would have had a profound effect on the climate of the Earth system.

Similar to the way scientists believe our climate behaves today, the team say their findings provide us with an insight into the Earth's surface environment prior to oxygenation of the planet.

Study lead Dr Aubrey Zerkle, based in the School of Civil Engineering and Geosciences at Newcastle University, explains: "Models have previously suggested that the Earth's early atmosphere could have been warmed by a layer of organic haze.

"Our geochemical analyses of marine sediments from this time period provide the first evidence for such an atmosphere.

"However, instead of evidence for a continuously 'hazy' period we found the signal flipped on and off, in response to microbial activity.

"This provides us with insight into Earth's surface environment prior to oxygenation of the planet and confirms the importance of methane gas in regulating the early atmosphere."

Dr Zerkle, working along with Dr James Farquhar at the University of Maryland, USA, and Dr Simon Poulton at Newcastle University, UK, analysed the geochemistry of marine sediments deposited between 2.65 and 2.5 billion years ago in what is now South Africa.

They found evidence of local production of oxygen by microbes in the oceans, but carbon and sulphur isotopes indicate that little of that oxygen entered the atmosphere.

Instead, the authors suggest that the atmosphere transitioned repeatedly between two states: one with a thin, hydrocarbon haze and the other haze-free. These geochemical records were supported by models of the ancient atmosphere performed by colleagues at the NASA Astrobiology Institute, led by Dr Mark Claire (currently at the University of East Anglia, UK) and Dr Shawn Domagal-Goldman, which demonstrated how the transitions could be caused by changes in the rate of methane production by microbes.
The conditions which enabled the bi-stable organic haze to form permanently ended when the atmosphere became oxygenated some 100 million years after the sediments were laid down.

"What is most surprising about this study is that our data seems to indicate the atmospheric events were discrete in nature, flip-flopping between one stable state into another," explains co-author Dr Farquhar.

"This type of response is not all that different from the way scientists think climate operates today, and reminds us how delicate the balance between states can be."

Professor Mark Thiemens, Dean of Physical Sciences at the University of California San Diego, adds: "Another important facet of the work is that it provides insight into the formation of atmospheric aerosols, particularly organic ones.

"Besides the obvious importance for the evolution of the atmosphere, the role of aerosol formation is one of the most poorly understood components in the present day climate models. This provides a new look into this process that is quite new and valuable."

Dr. Aubrey Zerkle | EurekAlert!
Further information:
http://www.newcastle.ac.uk

More articles from Earth Sciences:

nachricht Research icebreaker Polarstern begins the Antarctic season
09.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Far fewer lakes below the East Antarctic Ice Sheet than previously believed
08.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>