Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The green Sahara, a desert in bloom

01.10.2008
Reconstructing the climate of the past is an important tool for scientists to better understand and predict future climate changes that are the result of the present-day global warming.

Although there is still little known about the Earth’s tropical and subtropical regions, these regions are thought to play an important role in both the evolution of prehistoric man and global climate changes.

New North African climate reconstructions reveal three ‘green Sahara’ episodes during which the present-day Sahara Desert was almost completely covered with extensive grasslands, lakes and ponds over the course of the last 120.000 years. The findings of Dr. Rik Tjallingii, Prof. Dr. Martin Claussen and their colleagues will be published in the October issue of Nature Geoscience.

Scientists of the MARUM – Center for Marine Environmental Research in Bremen (Germany) and the Alfred-Wegener-Institute in Bremerhaven (Germany) studied a marine sediment core off the coast of Northwest Africa to find out how the vegetation cover and hydrological cycle of the Sahara and Sahel region changed.

The scientists were able to reconstruct the vegetation cover of the last 120.000 years by studying changes in the ratio of wind and river-transported particles found in the core. “We found three distinct periods with almost only river-transported particles and hardly any wind dust particles, which is remarkable because today the Sahara Desert is the world’s largest dust-bowl,” says Rik Tjallingii.

He now works at Kiel University, researching within the cluster of excellence 'The Future Ocean’. The scientists explain these periods by an increase of the precipitation that resulted in a much larger vegetation cover resulting in less wind dust and stronger river activity in the Sahara region. The green Sahara episodes correspond with the changing direction of the earth’s rotational axis that regulates the solar energy in the tropical Atlantic Ocean. Periods of maximum solar energy increased the moisture production while pushing the African monsoon further north and increasing precipitation in the Sahara.

To validate their interpretations, the scientist compared their geological reconstruction with a computer model simulation of the Sahara vegetation cover, performed by the research group of Prof. Dr. Martin Claussen. Dr. Claussen is Director of the Max-Planck-Institute of Meteorology in Hamburg and chairs the cluster of excellence ‘Integrated Climate System Analysis and Prediciton’ at the University of Hamburg. The computer model simulation shows three periods with an almost completely vegetated Sahara at the same time as seen in the geological record. This supports the interpretation of geologists and, in turn, demonstrates the value of computer model results. Additionally, the computer model indicates that only a small increase in precipitation is sufficient to develop a vegetation cover in the Sahara. Computer model simulations for the future suggest an expansion of the vegetation cover in the Sahara Desert if human-driven climate change leads to aggressive global warming. However, it is difficult to conclude that the Sahara will actually become greener than it is today, as the simulations do not account for the influence of human activity in this area.

Susanne Schuck | alfa
Further information:
http://www.uni-kiel.de
http://www.uni-kiel.de/download/pm/2008/2008-088-1.jpg

More articles from Earth Sciences:

nachricht Climate Change in West Africa
17.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Determining the Earth’s gravity field more accurately than ever before
13.06.2019 | Technische Universität Graz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>