Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great Indian Ocean Earthquake of 2004 Set Off Tremors in San Andreas Fault

12.12.2008
New research shows that the great Indian Ocean earthquake that struck off the Indonesian island of Sumatra on the day after Christmas in 2004 set off tremors nearly 9,000 miles away in the San Andreas fault at Parkfield, Calif.

In the last few years there has been a growing number of documented cases in which large earthquakes set off unfelt tremors in earthquake faults hundreds, sometimes even thousands, of miles away.

New research shows that the great Indian Ocean earthquake that struck off the Indonesian island of Sumatra on the day after Christmas in 2004 set off such tremors nearly 9,000 miles away in the San Andreas fault at Parkfield, Calif.

"We found that an earthquake that happened halfway around the world could trigger a seismic signal in the San Andreas fault. It is a low-stress event and a new kind of seismic phenomenon," said Abhijit Ghosh, a University of Washington doctoral student in Earth and space sciences.

"Previous research has shown that this phenomenon, called non-volcanic tremor, was produced in the San Andreas fault in 2002 by the Denali earthquake in Alaska, but seeing this new evidence of tremor triggered by an event as distant as the Sumatra earthquake is really exciting," he said.

Ghosh is to present the findings next week (Dec. 17) in a poster at the American Geophysical Union annual meeting in San Francisco.

The Indian Ocean earthquake on Dec. 26, 2004, was measured at magnitude 9.2 and generated tsunami waves that killed a quarter-million people. It was not known, however, that an earthquake of even that magnitude could set off non-volcanic tremor so far away.

The San Andreas fault in the Parkfield region is one of the most studied seismic areas in the world. It experiences an earthquake of magnitude 6.0 on an average of every 22 years, so a variety of instruments have been deployed to record the seismic activity.

In this case, the scientists examined data from instruments placed in holes bored in the ground as part of the High-Resolution Seismic Network operated by the University of California, Berkeley, as well as information gathered by the Northern California Seismic Network operated by the U.S. Geological Survey.

Signals corresponding with non-volcanic tremor at precisely the time that seismic waves from the Indian Ocean earthquake were passing the Parkfield area were recorded on a number of instruments as far as 125 miles apart.

"It's fairly obvious. There's no question of this tremor being triggered by the seismic waves from Sumatra," Ghosh said.

Scientists have pondered whether non-volcanic tremor is related to actual slippage within an earthquake fault or is caused by the flow of fluids below the Earth's surface. Recent research supports the idea that tremor is caused by fault slippage.

"If the fault is slipping from tremor in one place, it means stress is building up elsewhere on the fault, and that could bring the other area a little closer to a big earthquake," Ghosh said.

Monitoring tremor could help to estimate how much stress has built up within a particular fault.

"If the fault is closer to failure, then even a small amount of added stress likely can produce tremor," he said. "If the fault is already at low stress, then even high-energy waves probably won't produce tremor."

The work adds to the understanding of non-volcanic tremor and what role it might play in releasing or shifting stress within an earthquake-producing fault.

"Our single-biggest finding is that very small stress can trigger tremor," Ghosh said. "Finding tremor can help to track evolution of stress in the fault over space and time, and therefore could have significant implications in seismic hazard analysis."

Co-authors of the poster are John Vidale, Kenneth Creager and Heidi Houston of the UW and Zhigang Peng of the Georgia Institute of Technology. Funding for the work came from the National Science Foundation.

For more information, contact Ghosh at (404) 667-7470 or aghosh.earth@gmail.com

For more information on the AGU poster, see http://staff.washington.edu/aghosh1/AGhoshParkfield.html

Vince Stricherz | Newswise Science News
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>