Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GPS Can Now Measure Ice Melt, Change in Greenland Over Months Rather Than Years

25.07.2012
Researchers have found a way to use GPS to measure short-term changes in the rate of ice loss on Greenland – and reveal a surprising link between the ice and the atmosphere above it.

The study, published in the early online edition of the Proceedings of the National Academy of Sciences, hints at the potential for GPS to detect many consequences of climate change, including ice loss, the uplift of bedrock, changes in air pressure – and perhaps even sea level rise.

The team, led by earth scientists at Ohio State University, pinpointed a period in 2010 when high temperatures caused the natural ice flow out to sea to suddenly accelerate, and 100 billion tons of ice melted away from the continent in only 6 months.

They were able to make the measurement because the earth compresses or expands like a spring depending on the weight above it, letting them use the Greenland bedrock like a giant bathroom scale to weigh the ice atop it. As ice accumulates, the bedrock sinks, and as the ice melts away, the bedrock rises.

Measurements revealed that Greenland sank by about 6 mm (about one quarter of an inch) over the winter of 2010, and the researchers determined that half of the sinking (3 mm, or one eighth of an inch) was actually due to high air pressure above the ice, and the other half was due to ice accumulation.

Further, they determined that the bedrock lifted 11 mm (less than half an inch) over the course the summer. Air pressure appeared to affect the bedrock less during this time, so that the bounce-back appears to be mostly due to ice loss.

This method has been used to study ice loss before, in Antarctica as well as Greenland. But previously, GPS could only detect changes over a period of several years, said project leader Michael Bevis, Ohio Eminent Scholar in Geodynamics and professor in the School of Earth Sciences at Ohio State.

While shortening the detection time to six months is a substantial advance, Bevis thinks his team will soon do even better.

"Within the next year or so, we should be able to process the GPS data within a month of its being collected," he said, "and then we can monitor abrupt changes in ice mass only a month or two after they occur."

The key to the improvement is the network of GPS stations that the researchers stationed around the Greenland ice sheet. More than 50 transmitters are planted close enough together to detect changes in uplift along most of the Greenland coast. These GPS antennas are supported on poles anchored into bare rock, and so they record the rise of the bedrock itself.

The network is called the Greenland GPS Network (GNET).

GNET's measurements were so detailed that the researchers were able to determine what portion of bedrock motion was due to the ice melting away and what portion was due to seasonal swings in air pressure above the ice.

It's startling to think that changes in the weight of the air could push down on the ice with enough force to compress the bedrock below, Bevis said. Though researchers strongly suspected that this was happening, GNET has provided the first chance for them to isolate the air pressure signal from the overall motion of the bedrock.

The "bathroom scale" movement of the bedrock is thus reacting to the weight of the ice and the weight of the air.

"It surprises most meteorologists that there is such a strong seasonal signal in surface pressure in Greenland. But it amazes almost everyone to learn that seasonal changes in air mass push on the bedrock just as strongly as seasonal changes in ice mass. It is highly counterintuitive, but true!" Bevis said.

They compared GNET measurements to eight years worth of air pressure data, and were able to see patterns in the rise and fall of the bedrock.

The changes due to the ice and the air aren't exactly in sync – the air pressure rises steadily over the spring and drops off slowly over the summer and fall, while the weight of the ice grows through the spring, drops off quickly over the summer, and begins to recover in the fall.

The seasonal cycle of bedrock displacement is due to the interplay of those two cycles.

Now that researchers can isolate the air pressure signal, they can make more accurate measurements of ice mass. The idea is to calibrate GNET as an 'ice-weighing machine' by correlating daily displacements of the GPS stations with daily changes in surface pressure fields produced by numerical weather models.

Although this study revealed a dramatic six-month period of melting in Greenland in 2010, that short-term ice loss isn't necessarily a sign of a long-term trend, Bevis cautioned.

"It is dangerous to assume that rates observed over even two or three years reflect a long-term trend. Rates are known to change. So, it would be even more dangerous to assume that the record breaking summer of 2010 is the new norm."

"That being said, the summer of 2011 was also very hot. And this summer is starting off hot, too. So, I do expect to see a sustained increase in uplift rates when we compare 2010-2012 to 2007-2009," he added.

The researchers are continuing to monitor Greenland. In the meantime, they are investigating the possibility of detecting changes in sea level rise via GPS units planted at coastlines and in small ocean islands. Not all mechanisms of sea level rise produce variations in seafloor pressure, Bevis explained, but some of them do.

Coauthors of the study included Abel Brown, Eric Kendrick, Jason E. Box, Dana J. Caccamise II, Hao Zhou, Jian Wang, Terry Wilson, and David Bromwich of Ohio State; John Wahr of the University of Colorado; Shfaqat A. Khan, Finn Bo Madsen, Per Knudsen, and Rene Forsberg of DTU Space at the National Space Institute in Denmark; Michael Willis of Cornell University; Tonie van Dam, and Olivier Francis of the University of Luxembourg; Bjorn Johns, Thomas Nylen, Seth White, and Jeremy Miner of UNAVCO Inc.; and Robin Abbott of Polar Field Services.

GNET is a collaboration of Ohio State University, the National Space Institute at the Technical University of Denmark, and the University of Luxembourg, and it receives technical support from UNAVCO Inc. and logistical support from CH2M HILL Polar Services. The American component of GNET was funded by the US National Science Foundation.

Contact: Michael Bevis, (614) 247-5071; Bevis.6@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Editor's note: A map of the GNET transmitters in Greenland and a photograph of a GPS station planted in the bedrock are available from Pam Frost Gorder.

Michael Bevis | Newswise Science News
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>