Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming felt to deepest reaches of ocean

03.03.2014

Study shows climate change has put a freshwater lid on the Antarctic ocean, trapping warm water in ocean depths

In the mid-1970s, the first available satellite images of Antarctica during the polar winter revealed a huge ice-free region within the ice pack of the Weddell Sea. This ice-free region, or polynya, stayed open for three full winters before it closed.

Subsequent research showed that the opening was maintained as relatively warm waters churned upward from kilometres below the ocean's surface and released heat from the ocean's deepest reaches. But the polynya -- which was the size of New Zealand -- has not reappeared in the nearly 40 years since it closed, and scientists have since come to view it as a naturally rare event.

Now, however, a study led by researchers from McGill University suggests a new explanation: The 1970s polynya may have been the last gasp of what was previously a more common feature of the Southern Ocean, and which is now suppressed due to the effects of climate change on ocean salinity.

The McGill researchers, working with colleagues from the University of Pennsylvania, analyzed tens of thousands of measurements made by ships and robotic floats in the ocean around Antarctica over a 60-year period. Their study, published in Nature Climate Change, shows that the ocean's surface has been steadily getting less salty since the 1950s. This lid of fresh water on top of the ocean prevents mixing with the warm waters underneath. As a result, the deep ocean heat has been unable to get out and melt back the wintertime Antarctic ice pack.

"Deep ocean waters only mix directly to the surface in a few small regions of the global ocean, so this has effectively shut one of the main conduits for deep ocean heat to escape," says Casimir de Lavergne, a recent graduate of McGill's Master's program in Atmospheric and Oceanic Sciences and lead author of the paper.

The scientists also surveyed the latest generation of climate models, which predict an increase of precipitation in the Southern Ocean as atmospheric carbon dioxide rises. "This agrees with the observations, and fits with a well-accepted principle that a warming planet will see dryer regions become dryer and wetter regions become wetter," says Jaime Palter, a professor in McGill's Department of Atmospheric and Oceanic Sciences and co-author of the study. "True to form, the polar Southern Ocean - as a wet place - has indeed become wetter. And in response to the surface ocean freshening, the polynyas simulated by the models also disappeared." In the real world, the melting of glaciers on Antarctica - not included in the models - has also been adding freshwater to the ocean, possibly strengthening the freshwater lid.

The new work can also help explain a scientific mystery. It has recently been discovered that Antarctic Bottom Water, which fills the deepest layer of the world ocean, has been shrinking over the last few decades. "The new work can provide an explanation for why this is happening," says study co-author Eric Galbraith, a professor in McGill's Department of Earth and Planetary Sciences and a fellow of the Canadian Institute for Advanced Research. "The waters exposed in the Weddell polynya became very cold, making them very dense, so that they sunk down to become Antarctic Bottom Water that spread throughout the global ocean. This source of dense water was equal to at least twice the flow of all the rivers of the world combined, but with the surface capped by freshwater, it has been cut off."

"Although our analysis suggests it's unlikely, it's always possible that the giant polynya will manage to reappear in the next century," Galbraith adds. "If it does, it will release decades-worth of heat and carbon from the deep ocean to the atmosphere in a pulse of warming."

###

The research was supported by the Stephen and Anastasia Mysak Graduate Fellowship in Atmospheric and Oceanic Sciences, by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery programme, by the Canadian Institute for Advanced Research (CIFAR) and by computing infrastructure provided by the Canadian Foundation for Innovation and Compute Canada.

Chris Chipello | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>