Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whether glaciers float may affect sea-level rise

15.07.2010
Glaciers that detach from the seafloor and begin floating create larger icebergs than glaciers that stay on the sea floor, researchers have found.

Floating glaciers also produce icebergs more erratically. These new observations may help researchers better understand and predict iceberg production from glaciers and ice sheets, improving estimates of sea-level rise due to climate change.

“If we want to have accurate predictions of sea-level rise, we need to understand how to model iceberg calving,” says Fabian Walter, a glaciologist at the Scripps Institution of Oceanography, in La Jolla, Calif. Walter is lead author of the study, which has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union (AGU). “Calving” is the term for icebergs breaking off from glaciers.

This study presents the first detailed observation of a glacier undergoing a transition from grounded (resting on the ocean floor) to floating, as is currently happening to a section of Columbia Glacier, one of Alaska’s many tidewater glaciers. Tidewater glaciers flow directly into the ocean, ending at a cliff in the sea, where icebergs are formed. Prior to this study, Alaskan tidewater glaciers were believed to be exclusively grounded and unable to float without disintegrating.

Icebergs are a leading source of water for the global ocean basin. Despite this, iceberg calving is one of the least understood processes involved in ice mass loss and the corresponding sea-level rise. This study is part of a larger effort to understand the formation of icebergs from glaciers and to include that process in large-scale glacier models.

“We’re seeing more tidewater glaciers retreat,” says Walter. “As they retreat, they thin, and that increases the likelihood that they’ll come afloat.”

The research team conducted their study on Columbia Glacier by installing a seismometer−a sensor that measures seismic waves that are produced by shifts in geologic formations, including earthquakes, landslides, and the calving of icebergs. The scientists studied the seismometer readings from 2004-2005 and 2008-2009, which allowed them to compare size and frequency of icebergs calved by a glacier before and after it became floating.

Calving occurs when fractures in the ice join up and cause a piece of ice to completely separate from the main glacier to form an iceberg. Unlike the floating glaciers, grounded glaciers calve icebergs nearly continuously, which means they generally form smaller icebergs.

The speed at which the Columbia Glacier is receding may also have contributed to a section of its ice coming afloat, says glaciologist Shad O’Neel of the U.S. Geological Survey (USGS), in Anchorage, Alaska, who coauthored the paper. Columbia is one of the fastest-receding glaciers in the world, having retreated 4 kilometers (2.49 miles) since 2004, and nearly 20 km (12.43 mi) since 1980.

This research was funded by a grant from the National Science Foundation.

Scripps Institution of Oceanography is a graduate school of the University of California at San Diego.

Notes for Journalists
As of the date of this press release, the paper by Walter et al. is still “in press” (i.e. not yet published). Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press at http://www.agu.org/journals/pip/gl/2010GL043201-pip.pdf.
Or, you may order a copy of the paper by emailing your request to Kathleen O’Neil at koneil@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:
Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska
Authors:
Fabian Walter, Helen Amanda Fricker: Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla, California, USA;

Shad O’Neel: United States Geological Survey, Alaska Science Center, Anchorage, Alaska, USA;

Daniel McNamara: United States Geological Survey, Golden, Colorado, USA;

Tad Pfeffer: Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA USA;

Jeremy Bassis: Geological Sciences, University of Michigan, Ann Arbor, Michigan, USA.

Contact information for the authors:
Fabian Walter, UCSD – Dr. Walter is in the field in Switzerland, but can be reached by cell phone: +41 79 657 8087 Shad O’Neel, USGS: 907-786-7088, soneel@usgs.gov

Kathleen O’Neil | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>