Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant 'balloon of magma' inflates under Santorini

10.09.2012
A new survey suggests that the chamber of molten rock beneath Santorini's volcano expanded 10-20 million cubic metres – up to 15 times the size of London's Olympic Stadium – between January 2011 and April 2012.

The growth of this 'balloon' of magma has seen the surface of the island rise 8-14 centimetres during this period, a team led by Oxford University scientists has found.

The results come from an expedition, funded by the UK's Natural Environment Research Council, which used satellite radar images and Global Positioning System receivers (GPS) that can detect movements of the Earth's surface of just a few millimetres.

The findings are helping scientists to understand more about the inner workings of the volcano which had its last major explosive eruption 3,600 years ago, burying the islands of Santorini under metres of pumice. However, it still does not provide an answer to the biggest question of all: 'when will the volcano next erupt?'

A report of the research appears in this week's Nature Geoscience.

In January 2011, a series of small earthquakes began beneath the islands of Santorini. Most were so small they could only be detected with sensitive seismometers but it was the first sign of activity beneath the volcano to be detected for 25 years.

Following the earthquakes Michelle Parks, an Oxford University DPhil student, spotted signs of movement of the Earth's surface on Santorini in satellite radar images. Oxford University undergraduate students then helped researchers complete a new survey of the island.

Michelle Parks of Oxford University's Department of Earth Sciences, an author of the paper, said: 'During my field visits to Santorini in 2011, it became apparent that many of the locals were aware of a change in the behaviour of their volcano. The tour guides, who visit the volcano several times a day, would update me on changes in the amount of strong smelling gas being released from the summit, or changes in the colour of the water in some of the bays around the islands.

On one particular day in April 2011, two guides told me they had felt an earthquake while they were on the volcano and that the motion of the ground had actually made them jump. Locals working in restaurants on the main island of Thera became aware of the increase in earthquake activity due to the vibration and clinking of glasses in their bars.'

Dr Juliet Biggs of Bristol University, also an author of the paper, said: 'People were obviously aware that something was happening to the volcano, but it wasn't until we saw the changes in the GPS, and the uplift on the radar images that we really knew that molten rock was being injected at such a shallow level beneath the volcano. Many volcanologists study the rocks produced by old eruptions to understand what happened in the past, so it's exciting to use cutting-edge satellite technology to link that to what's going on in the volcanic plumbing system right now.'

Professor David Pyle of Oxford University's Department of Earth Sciences, an author of the paper, said: 'For me, the challenge of this project is to understand how the information on how the volcano is behaving right now can be squared with what we thought we knew about the volcano, based on the studies of both recent and ancient eruptions. There are very few volcanoes where we have such detailed information about their past history.'

The team calculate that the amount of molten rock that has arrived beneath Santorini in the past year is the equivalent of about 10-20 years growth of the volcano. But this does not mean that an eruption is about to happen: in fact the rate of earthquake activity has dropped off in the past few months.

Notes to editors

*A report of this research, entitled 'Evolution of Santorini Volcano dominated by episodic and rapid fluxes of melt from depth', is published in the journal Nature Geosience, embargoed until 1800 UK time / 1300 US Eastern time on Sunday 09 September.

*Recent eruptions on Santorini have usually involved two different sorts of magma: a dominant, silica-rich lava called a dacite; and a much smaller amount of a hotter, more-silica-poor lava called andesite. Previous work has shown that eruptions appear to be triggered by the arrival of the andesite, which stirs up the dacite and quickly (within perhaps a few weeks) starts an eruption. The current episode of unrest has now lasted much longer than can be explained by this sort of idea, so the working hypothesis is that the molten rock that is currently intruding beneath Santorini is dacite, and not andesite.

*This research was funded by the UK Natural Environment Research Council through an urgency grant. The work was carried out by researchers in Oxford and Bristol who are supported by the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET+), part of the NERC-funded National Centre for Earth Observation, Dynamic Earth and Geohazards Research Group, in collaboration with colleagues from the University of Athens and the National Technical University of Athens. Satellite data were provided by the German Space Agency (DLR) and the European Space Agency (ESA).

Additional support, in kind or through the loan of equipment, was provided by, among others, The Hellenic Military Geographical Service, Santorini Bellonio Library, the Nomikos Foundation, the Boatmen Union of Santorini and the NERC Geophysical Equipment Facility.

University of Oxford press office | EurekAlert!
Further information:
http://www.ox.ac.uk

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>