Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting the measure of mud

27.09.2017

Researchers have found a way to chart changes in the speed of deep-ocean currents using the most modest of materials -- mud

Researchers have found a way to chart changes in the speed of deep-ocean currents using the most modest of materials - mud. The approach, reported in the journal Deep-Sea Research Part I, could provide scientists with a better basis for understanding the behaviour of ancient ocean currents and, in an age of mounting apprehension over climate change, could help them to judge what level of fluctuation can be considered cause for concern.


A plankton bloom swirls in dark water. Deep-sea currents bring nutrients up to sunlit surface waters fueling the growth and reproduction of these tiny plants.

Credit: NASA via Flickr

Acting like giant conveyor belts, ocean currents transport water warmed by the sun's powerful rays over the equator towards the poles. As the water cools and releases its warmth into the atmosphere, areas in the North and South benefit from the warm air. In turn, currents regulate temperatures along the equator by offering an escape route for some of the heat.

The speed of ocean currents is hugely variable, but scientists are increasingly concerned that man-made climate change is altering their natural flow. If rising sea temperatures and increased levels of fresh water from melting ice caps slow down currents, this could wreak havoc on global weather systems and impede the vital role they play in counteracting the uneven distribution of solar radiation that reaches the Earth's surface.

In order to fully understand what is happening to currents today and whether it is extraordinary, researchers need to build a picture of how they have behaved over time.

Modern current meters made from steel and plastic have only been widely used to track currents far beneath the surface since the 1960s, so to get a sense of how currents naturally fluctuate over long periods, scientists rely on proxies - such as changes over time in the natural radioactivity of particles.

Now, new research led by Professor Nick McCave, Fellow at St John's College and Emeritus Professor at the Department of Earth Sciences, University of Cambridge, has found a way to use the size of mud particles deposited on the ocean floor to measure changes in the speed at which ocean currents flow, offering another means for scientists to identify patterns in ancient current speeds.

Currents pick up and carry mud particles, dropping out larger grains as they slow down. Over time, a record of the size of particles deposited on the ocean floor is built up in layers of sediment.

For the study, McCave visited various deep sea mud deposits near the east coast of the United States, Iceland and Portugal where there have been modern current meters in operation. From research ships the researchers sent instruments down to depths of up to four kilometres beneath the water and extracted "cores", or samples of sediment, from the ocean floor.

The average rate of sedimentation in the world's oceans is about two to three centimetres per thousand years, but in the mounds of mud McCave was investigating up to 50 centimetres is deposited per thousand years, providing the researchers with a cross section of sediment layers with a much more clearly-defined picture of how strata of mud particles correspond with periods of time.

McCave obtained the records from the current meters and examined them for an average flow speed. Then, from the cores, he took the top two centimetres of sediment and looked for tiny particles measuring over 10 microns, where one micron is equal to one millionth of a meter.

By comparing the size of the mud grains to the data from the current meters, McCave was able to calibrate how the size of mud particles relates to the current speed.

McCave said: "While the calibration was not precise enough to say what the exact current speed was during a specific year of history, it can give an accurate measurement of how much current speed has changed between two points in time - for example between an ice age and a warm period like the present. That's about 20,000 years. But the variability of Atlantic current flow since the early 1800s can also be tracked and shown to be closely related to temperature changes.

"Using mud as a current meter gives us another means to look at long-term trends and could result in improved computer modelling that better incorporates deep ocean flow. We know that ocean current speeds can vary enormously, but having data that shows patterns going further back in time than the last 50 years could tell us what level of fluctuation should set off alarm bells."

###

Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the 'Mud Current Meter' is available in full via: http://www.sciencedirect.com/science/article/pii/S0967063717300754

Media Contact

Shelley Hughes
svh27@cam.ac.uk
44-012-233-38711

 @stjohnscam

http://www.joh.cam.ac.uk/ 

Shelley Hughes | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>