Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geophysicists employ novel method to identify sources of global sea level rise

25.04.2012
As the Earth's climate warms, a melting ice sheet produces a distinct and highly non-uniform pattern of sea-level change, with sea level falling close to the melting ice sheet and rising progressively farther away. The pattern for each ice sheet is unique and is known as its sea level fingerprint.

Now, a group of geophysicists from the University of Toronto, Harvard and Rutgers Universities have found a way to identify the sea level fingerprint left by a particular ice sheet, and possibly enable a more precise estimate of its impact on global sea levels.

"Our findings provide a new method to distinguish sea-level fingerprints in historical records of sea levels, from other processes such as ocean waves, tides, changes in ocean circulation, and thermal expansion of the ocean," says Carling Hay, a Ph D candidate in the Department of Physics at the University of Toronto and lead author of a study published in Proceedings of the National Academy of Sciences (PNAS). "It may indeed allow us to estimate the contributions of individual ice sheets to rising global sea levels."

Scientists around the world are trying to estimate both the current rate of sea level rise and the rates of ice sheet melting, and yet little work has been done to combine the two problems and answer these questions simultaneously.

Hay and colleagues Jerry Mitrovica and Eric Morow of Harvard University, and Robert E. Kopp of Rutgers University sought out statistical techniques that had not previously been applied to this problem, and began developing the new method using data analysis techniques common in other fields such as engineering science, economics, and meteorology. The researchers then tested and refined the method by applying it to synthetic data sets – i.e., data sets with the same amount of noise as real data, but with known melting signals. The tests provide important guidance for the application of the method to actual sea-level records.

"We are now applying our methodology to historical sea level records to provide a new estimate of total sea level rise and the melt rates of the Greenland and West Antarctic ice sheets, over the 20th century," says Hay. "Preliminary results show intriguing evidence for acceleration of globally averaged sea-level rise in the second half of the period, along with a simultaneous rise in temperature. Once our study of historical records is complete, the next step will be to incorporate satellite-based measurements of sea-level changes."

The findings are reported in the paper "Estimating the sources of global sea level rise with data assimilation techniques." The research is supported by funding from the Canadian Institute for Advanced Research, Harvard University, and the US Department of Energy American Association for the Advancement of Science Fellowship Program.

MEDIA CONTACTS:
Carling Hay
Department of Physics
University of Toronto
chay@atmosp.physics.utoronto.ca
617-899-3323
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
416-946-7950

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>