Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Geophysicist's Guide to Striking It Rich

01.09.2011
TAU researchers develop integrated method for oil and gas survey

Prospecting — the search for valuable reserves such as gold, diamond and natural gas — isn't just a matter of luck. It's about knowing where to look. Now researchers at Tel Aviv University have modernized the hit-or-miss search with cutting-edge technology that scans the earth for signs of lucrative resources that could lurk beneath our feet.

Combining a number of surveying techniques for the first time, Prof. Lev Eppelbaum of TAU's Department of Geophysics and Planetary Sciences at the Raymond and Beverly Sackler Faculty of Exact Sciences and Dr. Youri Katz of TAU's Department of Zoology at the George S. Wise Faculty of Life Sciences have carried out a more accurate and in-depth land survey of Israel and the surrounding Mediterranean area than ever before. Their findings pinpoint the most likely places to find reservoirs of natural gas and oil.

Fifteen years in the making, their technique, which recently appeared in the journal Positioning, can be applied to any region in the world to more accurately identify possible riches below — before the costs of drilling or mining are incurred.

From buyers to producers

To create detailed structural-tectonic maps of Israel and the surrounding areas, Prof. Eppelbaum and Dr. Katz carried out an integrated survey using a variety of geophysical tools, including advanced analysis of magnetic, gravity, and temperature fields; utilization of seismic, magnetotelluric, and satellite imaging; and numerous well sections and outcropping studies. All of these results were integrated with plate tectonics reconstructions.

Perhaps the most valuable results of their study, the researchers say, are a series of prospective maps which identify specific areas where geological-geophysical teams are most likely to be successful in the search for natural gas and oil. Such information is not only of critical economic importance to Israel, but will also diversify oil and gas options for consumers worldwide.

Just off the shore of Haifa, a northern city along Israel's coastline, there is believed to be a five hundred billion cubic meter area of gas reserve, Prof. Eppelbaum says. The survey indicates that a few tens of kilometers away, there may be another reserve that would significantly increase the current estimated amount of gas, he notes.

His predictions for additional oil reserves in deep water zones increase the estimated total of gas reserves by 200-300%. "Israel could have a future as a gas country — one that can produce oil and gas and sell it to the rest of the world," Prof. Eppelbaum predicts.

A well-rounded approach

Prof. Eppelbaum says that the research was inspired by Prof. Zvi Ben-Avraham of the Department of Geophysics and Planetary Sciences, who was the first to apply the theory of plate tectonics to Israel and the Eastern Mediterranean. His findings provide a deeper understanding of the geophysical conditions in the region.

Warning that many researchers specialize too narrowly in a specific field or method, Prof. Eppelbaum stresses that the interdisciplinary approach of the Tel Aviv University team had a direct impact on the success of the study. An integrated approach puts critical information firmly in the grasp of today’s scientists — and those "prospecting" for a brighter tomorrow.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>