Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geology research in Lund receives SEK 40 million

21.12.2011
Within the space of a week, Lund University’s geology researchers have raked in SEK 40 million.
Professor Birger Schmitz has received SEK 25 million for his ground breaking research on the meteorite flux to earth that has been taking place for billions of years. Professor Daniel Conley has received SEK 15 million for research on how carbon dioxide levels in the atmosphere have varied in the past.

Both Birger Schmitz and Daniel Conley are based at the Department of Earth and Ecosystem Sciences at Lund University, Sweden.

Birger Schmitz is a bedrock geologist and a world leader in the emerging field of research on the history of life from a broader astronomical perspective. He has received SEK 25 million from the European Research Council (ERC), which is a desirable and prestigious honour in the research community.

With the help of an amateur geologist and three quarry workers, Birger Schmitz has previously uncovered over 90 fossilised meteorites in 470 million year old bedrock in Västergötland, Sweden – a unique find. The meteorites come from one of the largest explosions in the recent history of the solar system, when a comet broke up an asteroid of several hundred kilometres diameter between Mars and Jupiter, which had consequences for life on earth. Still today, around a third of meteorites that fall to earth come from this event that happened 470 million years ago.

In the new ERC-funded project, Astrogeobiosphere, Birger Schmitz has developed pioneering methods to link the evolution of life to events in the history of the solar system and the galaxy. By studying microscopic extraterrestrial minerals in sediment from different periods in the history of the earth, the origins of the astronomical body that wiped out the dinosaurs 65 million years ago could be traced. Using the new methods, the movement of the solar system through the spiral arms of the galaxy, as well as the rotation of the galaxy, can be traced in sediment that has been deposited on earth over billions of years. According to the ERC, Birger Schmitz project has paved the way for a whole new interdisciplinary research field in the interface between geology, astronomy and biology.

Daniel Conley is a biogeochemist and conducts research on oxygen deficiency and dead seabeds in the Baltic Sea and on how levels of carbon dioxide in the atmosphere have varied in the past, on a time scale from tens of thousands to millions of years. His work has now been recognised by the Knut and Alice Wallenberg Foundation (KAW), which at its latest board meeting appointed his as one of the participants in the Wallenberg Scholars programme. The appointment comes with financial support of SEK 15 million, to be used freely for research projects. Conley has been awarded the funding for the part of his research that concerns carbon dioxide levels in the atmosphere. He obtains his research results by analysing ancient sediment layers below the seabed in various locations around the world.

“In order to understand climate change and the greenhouse effect, we need to know more about how carbon dioxide levels in the atmosphere have varied in the past”, says Professor Conley.

For more information, please contact:

Birger Schmitz, tel. +46 768 565568, Birger.Schmitz@geol.lu.se or

Daniel Conley, tel. +46 46 222 0449, Daniel.Conley@geol.lu.se

Megan Grindlay | idw
Further information:
http://www.lu.se

More articles from Earth Sciences:

nachricht Typhoon changed earthquake patterns
03.07.2020 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

nachricht Groundwater protection on Spiekeroog Island - first installation of a salt water monitoring system
01.07.2020 | Leibniz-Institut für Angewandte Geophysik (LIAG)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Moss protein corrects genetic defects of other plants

03.07.2020 | Life Sciences

Typhoon changed earthquake patterns

03.07.2020 | Earth Sciences

New candidate for raw material synthesis through gene transfer

03.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>