Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Find Ponds Not the Cause of Arsenic Poisoning in India's Groundwater

04.11.2011
The source of arsenic in India's groundwater continues to elude scientists more than a decade after the toxin was discovered in the water supply of the Bengal delta in India. But a recent study with a Kansas State University geologist and graduate student, as well as Tulane University, has added a twist -- and furthered the mystery.

Arsenic is a naturally occurring trace element, and it causes skin lesions, respiratory failure and cancer when present in high concentrations in drinking water. The environmental crisis began after large traces of the element were detected in the groundwater in the Bengal Basin -- an area inhabited by more than 60 million residents. This has caused a water shortage, illness and death in the region, leaving residents unable to even use the water for ordinary tasks like washing dishes or ablution.

"It's an awful situation," said Saugata Datta, a Kansas State University assistant professor of geology. "This is one of the worst mass poisoning cases in this history of mankind."

Though no definitive arsenic source has been determined, many geologists have claimed that recent man-made ponds in the region are a major contributor, as the heavy rainfall and erosion have created high amounts of organic material -- containing arsenic -- in the ponds. From there the pond's water and organic material seep into the groundwaters.

Datta and colleagues recently completed a study looking at the ponds. Their findings, "Perennial ponds are not an important source of water or dissolved organic matter to groundwaters with high arsenic concentration in West Bengal, India," was published in Geophysical Research Letters in late October, and it also appeared in the journal Nature.

"Our study suggests that ponds are not contributing substantial amount of water or this old organic matter into the groundwaters in the shallow aquifer in this region," Datta said. "These very high arsenic levels are actually coming from something else, possibly from within the organic matter contained in these Holocene sedimentary basins."

Datta, along with Tulane University colleague Karen Johannesson -- the study's other lead investigator -- came to this conclusion after modeling the transport of the pond's organic matter through the meters of sand and clay to the aquifers below. Because of the organic matter's highly reactive nature to minerals -- like arsenic -- researchers found that this organic matter actually serves as a retardant and causes minerals to absorb more slowly into the aquifer sediments.

"Characteristically the organic matter is very sticky and likes to glom onto mineral surfaces," Johannesson said. "So it takes much longer for the organic matter to move the same distance along a groundwater flow path than it does through just the water itself."

According to their model, it would take thousands of years to reach roughly 30 meters into the aquifers in the Bengal delta, which is where we see this peak of arsenic.

"These high arsenic waters at the 30 meter depth are approximately 50 years old," Datta said. "Since the ponds that supply the organic matter have been around for thousands of years, the current ponds would not be the source of this organic matter."

The team created their model partially based on stable isotope data at Kansas State University's Stable Isotope Spectrometry Laboratory. The lab is operated by Troy Ocheltree, a biology research assistant who co-authored the study.

In the near future, Datta, Sankar Manalikada Sasidharan, a geology graduate student, India, and Sophia Ford, a geology undergraduate student, Wilson, will travel to the region to collect groundwater and aquifer sediment samples for an extensive study that accounts for various valleys and ponds. In addition to arsenic, the team will also monitor for high concentrations of manganese, as scientists are finding that the two metals often appear together.

"The work that we've started to look into this source mechanism release in the Bengal delta is still far from being solved," Datta said. "The mystery still remains. We just added a little bit more to it."

The study was partially funded by a hydrology grant from the National Science Foundation.

Saugata Datta, 785-532-2241, sdatta@k-state.edu

Saugata Datta | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Earth Sciences:

nachricht New technique separates industrial noise from natural seismic signals
20.05.2020 | DOE/Los Alamos National Laboratory

nachricht NASA's ICESat-2 measures Arctic Ocean's sea ice thickness, snow cover
19.05.2020 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>