Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists discover new class of landform -- on Mars

22.03.2012
An odd, previously unseen landform could provide a window into the geological history of Mars, according to new research by University of Washington geologists.

They call the structures periodic bedrock ridges (and they use the abbreviation PBRs to evoke a favorite brand of beer). The ridges look like sand dunes but, rather than being made from material piled up by the wind, the scientists say the ridges actually form from wind erosion of bedrock.


Images from the High Resolution Imaging Science Experiment on NASA's Mars Reconnaissance Orbiter show exposed rock strata in periodic bedrock ridges on the floor of the West Candor Chasma on Mars. Credit: NASA

"These bedforms look for all the world like sand dunes but they are carved into hard rock by wind," said David Montgomery, a UW professor of Earth and space sciences. It is something there are not many analogs for on Earth."

He believes the ridges, while still bedrock, are composed of a softer, more erodible material than typical bedrock and were formed by an unusual form of wind erosion that occurs perpendicular to the prevailing wind rather than in the same direction.

He contrasts the ridges with another bedrock form called a yardang, which has been carved over time by headwinds. A yardang has a wide, blunt leading edge in the face of the wind, and its sides are tapered so that it resembles a teardrop.

In the case of periodic bedrock ridges, Montgomery believes high surface winds on Mars are deflected into the air by a land formation, and they erode the bedrock in the area where they settle back to the surface.

Spacing between ridges depends on how long it takes for the winds to come back to the surface, and that is determined by the strength of the wind, the size of the deflection and the density of the atmosphere, he said.

The discovery is important because if the ridges were actually created by wind depositing material into dunes, "you're not going to have information from any prior history of the material that is exposed at the surface," he said.

"But if it's cut into instead, and you're looking at the residual of a rock that has been eroded away, you can still get the history of what was happening long ago from that spot," Montgomery said.

"You could actually go back and look at some earlier eras in Martian history, and the wind would have done us the favor of exposing the layers that would have that history within it," he said. "There are some areas of the Martian surface, potentially large areas, that up until now we've thought you couldn't really get very far back into Mars history geologically."

Montgomery is the lead author of a paper documenting the discovery published online March 9 in the Journal of Geophysical Research, a journal of the American Geophysical Union. Coauthors are Joshua Bandfield, a UW research assistant professor of Earth and space sciences, and Scott Becker, who did the work as an undergraduate in Earth and space sciences and has received his degree. The work was funded in part by NASA.

There could be landforms on Earth that are somewhat similar to periodic bedrock ridges, Montgomery said, but to date there's nothing exactly like it, largely because there are not many bedrock landscapes on Earth in which wind is the main erosion agent.

"There are very few places … where you have bedrock exposed at the surface where there isn't also water that is carving valleys, that's shaping the topography," he said. "Mars is a different planet, obviously, and the biggest difference is the lack of fluvial action, the lack of water working on the surface."

For more information, contact Montgomery at 206-685-2560 or dave@ess.washington.edu.

The paper is available at http://www.agu.org/pubs/crossref/2012/2011JE003970.shtml

Vince Stricherz | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>