Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoengineering could lead to a whiter sky

01.06.2012
One idea for fighting global warming is to increase the amount of aerosols in the atmosphere, scattering incoming solar energy away from the Earth's surface.

But scientists theorize that this solar geoengineering could have a side effect of whitening the sky during the day. New research indicates that blocking 2 percent of the sun's light would make the sky three- to-five times brighter, as well as whiter.

Carbon dioxide emissions from the burning of coal, oil, and gas have been increasing over the past decades, causing the Earth to get warmer. Large volcanic eruptions cool the planet by creating lots of small particles in the stratosphere, but the particles fall out within a couple of years, and the planet heats back up. The idea behind solar geoengineering is to constantly replenish a layer of small particles in the stratosphere, mimicking this volcanic aftermath and scattering sunlight back to space.

Using advanced models, Carnegie's Ben Kravitz and Ken Caldeira, along with Douglas MacMartin from the California Institute of Technology, examined changes to sky color and brightness from using sulfate-based aerosols in this way. They found that, depending on the size of the particles, the sky would whiten during the day and sunsets would have afterglows. Their work will be published 1 June in Geophysical Research Letters, a journal of the American Geophysical Union.

The scientists' models predict that the sky would still be blue, but it would be a lighter shade than what most people are used to looking at now. The research team's work shows that skies everywhere could look like those over urban areas in a world with this type of geoengineering taking place. In urban areas, the sky often looks hazy and white.

"These results give people one more thing to consider before deciding whether we really want to go down this road," Kravitz said. "Although our study did not address the potential psychological impact of these changes to the sky, they are important to consider as well."

There are several larger environmental implications to the group's findings, too. Because plants grow more efficiently under diffuse light conditions such as this, global photosynthetic activity could increase, pulling more of the greenhouse gas carbon dioxide out of the atmosphere. On the other hand, the effectiveness of solar power could be diminished, as less sunlight would reach solar-power generators.

"I hope that we never get to the point where people feel the need to spray aerosols in the sky to offset rampant global warming," Caldeira said. "This is one study where I am not eager to have our predictions proven right by a global stratospheric aerosol layer in the real world."

Title: "Geoengineering: Whiter Skies?"

Authors: Ben Kravitz: Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA; Douglas G MacMartin: Department of Control and Dynamical Systems, California Institute of Technology, Pasadena, California, USA; Ken Caldeira: Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA.

Contact Information for the Authors: Ben Kravitz, Email: bkravitz@stanford.edu

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Hundreds of bubble streams link biology, seismology off Washington's coast
22.03.2019 | University of Washington

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>