Geoengineering climate requires more research, cautious consideration and appropriate restrictions

According to the Society, geoengineering will not substitute for either aggressive emissions reduction or efforts to adapt to climate change, but it could help lower greenhouse gas concentrations, provide options for reducing specific climate impacts, or offer strategies of last resort if abrupt, catastrophic, or otherwise unacceptable climate-change impacts become unavoidable by other means.

However, AMS scientists caution that research to date has not determined whether there are large-scale geoengineering approaches that would produce significant benefits, or whether those benefits would substantially outweigh the detriments.

The Society notes that geoengineering must be viewed with caution because manipulating the Earth system has considerable potential to trigger adverse and unpredictable consequences.

“We can't escape the need to dramatically reduce our greenhouse gas emissions starting immediately,” said Paul Higgins, AMS senior policy fellow and chair of the statement drafting team. “But even our past emissions bring us to uncharted territory and create risks so severe that we must responsibly consider all options.”

Geoengineering proposals differ widely in their potential to reduce impacts, create new risks, and redistribute risk among nations. For example, techniques that remove carbon dioxide directly from the air would confer global benefits but could also create adverse local impacts. Reflecting sunlight would likely reduce Earth's average temperature but could also change global circulation patterns with potentially serious consequences such as changing storm tracks and precipitation patterns.

Even if reasonably effective and beneficial overall, geoengineering is unlikely to alleviate all of the serious impacts from increasing greenhouse gas emissions.

Still, the threat of climate change is serious. Mitigation efforts so far have been limited in magnitude, tentative in implementation, and insufficient for slowing climate change enough to avoid potentially serious impacts. Furthermore, it is unlikely that all of the expected climate-change impacts can be managed through adaptation. Thus, it is prudent to consider geoengineering's potential benefits, to understand its limitations, and to avoid ill-considered deployment.

The AMS statement has three specific recommendations:

Enhanced research on the scientific and technological potential for geoengineering the climate system, including research on intended and unintended environmental responses.

A coordinated study of historical, ethical, legal, and social implications of geoengineering that integrates international, interdisciplinary, and intergenerational issues and perspectives and includes lessons from past efforts to modify weather and climate.

Development and analysis of policy options to promote transparency and international cooperation in exploring geoengineering options along with restrictions on reckless efforts to manipulate the climate system.

AMS policy statements advocate a position on science and technology issues of concern to AMS members; provide analysis, articulate the state of scientific understanding, or express the concern of the scientific community about issues pertinent to a current public policy issue; raise awareness of a scientific issue with potential future policy implications; and make policy recommendations based on the professional and scientific expertise and perspectives of the AMS. All AMS statements are online at http://www.ametsoc.org/policy/

The AMS is the nation's premier professional organization for those involved in the atmospheric and related sciences.

Media Contact

Stephanie Kenitzer EurekAlert!

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors