Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

French, American team finds regolith of small asteroids formed by thermal fatigue

03.04.2014

The centimeter-sized fragments and smaller particles that make up the regolith — the layer of loose, unconsolidated rock and dust — of small asteroids is formed by temperature cycling that breaks down rock in a process called thermal fatigue, according to a paper published today in the Nature Advance Online Publication.

Previous studies suggested that the regolith of asteroids one kilometer wide and smaller was made from material falling to the surface after impacts and from boulders that were pulverized by micrometeoroid impacts.

Recent laboratory experiments and impact modeling conducted by a team of researchers from Observatoire de la Côte d'Azur, Hopkins Extreme Materials Institute at Johns Hopkins University, Institut Supérieur de l'Aéronautique et de l'Espace and Southwest Research Institute (SwRI) have shown that the debris from large impacts reaches escape velocities and breaks free from the gravitational pull of these asteroids, indicating this mechanism is not the dominant process for regolith creation.

The team's research showed that thermal fragmentation, which is induced by mechanical stresses caused by temperature variations of the rapidly spinning asteroid's short night and day, to be the process primarily responsible for breaking up rocks larger than a few centimeters on asteroids.

"We took meteorites as the best analog of asteroid surface materials that we have on the Earth," said Dr. Marco Delbo of the Observatoire de la Côte d'Azur. "We then submitted these meteorites to temperature cycles similar to those that rocks experience on the surfaces of near-Earth asteroids and we found that microcracks grow inside these meteorites quickly enough to entirely break them on timescales much shorter than the typical lifetime of asteroids."

Model extrapolation of these experiments also showed that thermal fragmentation caused rocks to break down an order of magnitude faster than from micrometeoroid impacts, particularly at distances of 1 astronomical unit (about 93 million miles) with the speed of breakdown slowing at distances further from the Sun.

"Even asteroids significantly farther from the Sun showed thermal fatigue fragmentation to be a more relevant process for rock breakup than micrometeoroid impacts," said Dr. Simone Marchi, a scientist in the SwRI Space Science and Engineering Division.

The results of this study suggest that thermal fragmentation, combined with solar radiation pressures that sweep away surface particles, could completely erode small asteroids at distances closer to the Sun (about 28 million miles) in about 2 million years.

###

The French Agence National de la Recherche SHOCKS, BQR of the Observatoire de la Côte d'Azur, the University of Nice-Sophia Antipolis, the Laboratory GeoZur, the French National Program of Planetology, and NASA's Solar System Exploration Research Virtual Institute funded this research.

The paper "Thermal Fatigue as the Origin of Regolith on Small Asteroids," by Marco Delbo, Guy Libourel, Justin Wilkerson, Naomi Murdoch, Patrick Michel, K.T. Ramesh, Clement Ganino, Chrystele Verati, and Simone Marchi, (doi: 10.1038/nature13153) will be published in the April 10 print issue of Nature.

Maria Martinez Stothoff | EurekAlert!
Further information:
http://www.swri.org

Further reports about: Observatoire Planetology Sun asteroids fragmentation materials meteorites temperature

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>