Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fracking requires a minimum distance of at least 0.6 kilometers from sensitive rock strata

25.04.2012
The chances of rogue fractures due to shale gas fracking operations extending beyond 0.6 kilometres from the injection source is a fraction of one percent, according to new research led by Durham University.

The analysis is based on data from thousands of fracking operations in the USA and natural rock fractures in Europe and Africa.

It is believed to be the first analysis of its type and could be used across the world as a starting point for setting a minimum distance between the depth of fracking and shallower aquifers used for drinking water.

The new study, published in the journal Marine and Petroleum Geology, shows the probabilities of 'rogue' fractures, induced in fracking operations for shale gas extraction, extending beyond 0.6 kilometres from the injection source is exceptionally low. The probability of fractures extending beyond 350 metres was found to be one per cent.

During fracking operations, fractures are created by drilling and injecting fluid into the rock strata underground to increase oil and gas production from fine-grained, low permeability rocks such as shale. These stimulated fractures can significantly increase the rate of production of oil and gas from such rocks.

Fracking operations in the USA are growing in number and many countries across the world are looking at shale gas as a potential energy resource. The process of fracking has come under increasing scrutiny. A recent test well in the UK near Blackpool, Lancashire, was stopped after some minor earthquakes were felt at the surface. The UK government is allowing the test fracking to resume but critics have also warned of other possible side-effects including the contamination of groundwater.

Researchers from Durham University, Cardiff University and the University of Tromsø looked at thousands of natural and induced fractures from the US, Europe and Africa. Of the thousands artificially induced, none were found to exceed 600 metres, with the vast majority being much less than 250 metres in vertical extent.

Fracture heights are important as fractures have been cited as possible underground pathways for deep sources of methane to contaminate drinking water. But the likelihood of contamination of drinking water in aquifers due to fractures when there is a separation of more than a kilometre is negligible, the scientists say.

Professor Richard Davies, Director of Durham Energy Institute, Durham University, said: "Based on our observations, we believe that it may be prudent to adopt a minimum vertical separation distance for stimulated fracturing in shale reservoirs. Such a distance should be set by regulators; our study shows that for new exploration areas where there is no existing data, it should be significantly in excess of 0.6 km.

"Shale gas exploration is increasing across the world and sediments of different ages are now potential drilling targets. Constraining the maximum vertical extent of hydraulic fractures is important for the safe exploitation of unconventional hydrocarbons such as shale gas and oil, and the data from the USA helps us to understand how fracturing works in practice.

"Minimum vertical separation distances for fracturing operations would help prevent unintentional penetration of shallow rock strata."

Professor Davies' team looked at published and unpublished datasets for both natural and stimulated fracture systems in sediment of various ages, from eight different locations in the USA, Europe and Africa.

Professor Richard Davies said: "Sediments of different types and ages are potential future drilling targets and minimum separation depths are an important step towards safer fracturing operations worldwide and tapping into what could be a valuable energy resource.

"We need to keep collecting new data to monitor how far fractures grow in different geological settings."

The team accepts that predicting the height and behaviour of fractures is difficult. They now hope that the oil and gas industry will continue to provide data from new sites across the globe as it becomes available to further refine the probability analysis.

Analysis of new sites should allow a safe separation distance between fracking operations and sensitive rock layers to be further refined, the scientists say. In the meantime, the researchers hope that governments and shale gas drilling companies will use the analysis when planning new operations.

Carl Stiansen | EurekAlert!
Further information:
http://www.durham.ac.uk

More articles from Earth Sciences:

nachricht NASA analyzes Tropical Cyclone Cristina's water vapor concentration
09.07.2020 | NASA/Goddard Space Flight Center

nachricht In the Arctic, spring snowmelt triggers fresh CO2 production
06.07.2020 | San Diego State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>