New way found of monitoring volcanic ash cloud

New research, to be published today, Friday 10 December, in IOP Publishing's Environmental Research Letters, shows that lightning could be used as part of an integrated approach to estimate volcanic plume properties.

The scientists found that during many of the periods of significant volcanic activity, the ash plume was sufficiently electrified to generate lightning, which was measured by the UK Met Office's long range lightning location network (ATDnet), operating in the Very Low Frequency radio spectrum.

The measurements suggest a general correlation between lightning frequency and plume height and the method has the advantage of being detectable many thousands of kilometres away, in both day and night as well as in all weather conditions.

As the researchers write, “When a plume becomes sufficiently electrified to produce lightning, the rate of lightning generation provides a method of remotely monitoring the plume height, offering clear benefits to the volcanic monitoring community.”

The paper can be found in IOP Publishing's open-access journal Environmental Research Letters at http://iopscience.iop.org/1748-9326/5/4/044013/fulltext

Media Contact

Lena Weber EurekAlert!

More Information:

http://www.iop.org

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors