Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossils Turn Out to Be a Rich Source of Information

09.02.2016

For more than 70 years, fossilized arthropods from Quercy, France, were almost completely neglected because they appeared to be poorly preserved. With the help of the Synchrotron Radiation Facility ANKA at the Karlsruhe Institute of Technology (KIT), an international and interdisciplinary team of researchers with substantial participation from the University of Bonn has now been able to X-ray the 30-million-year-old beetle fossils. The internal structures are shown in such detail that the scientists were able to create an extensive description and an evolutionary analysis of the beetles. The results of this study have now been published in the professional journal “eLIFE.”

The beetles, just a few millimeters long, come from a collection of fossilized arthropods – mainly insects – that was collected in Quercy, France more than 100 years ago. “The last time they were studied in detail was in 1944. Until now, people were mainly interested in the vertebrates from this fossil site,” says paleontologist Dr. Achim Schwermann from the Steinmann Institute at the University of Bonn. One reason the insects had been so neglected until now is that the samples outwardly seemed poorly preserved.


The rock has created a detailed mold of the beetle’s fragile legs and outer structure, thereby preserving them. Internal organs, for instance the genitalia, have also been preserved in a mineral way.

(c) Photo: Achim Schwermann/Thomas van de Kamp


Preparation: (A) The fossilized beetle. (B) Digital model: the actual beetle (green) protrudes slightly from the rock (brown). (C) The digital preparation reveals an image of the encased body parts.

(c) Photo: Achim Schwermann/Thomas van de Kamp

With the help of modern imaging methods, however, their internal structures could now be unlocked. The researchers analyzed the fossils in the Synchrotron Radiation Facility ANKA at the Karlsruhe Institute of Technology (KIT), using X-ray computed tomography. That allowed them to create a three-dimensional image of the insides of the opaque fossils.

“The actual measurement process only took a few seconds,” explains engineer Tomy dos Santos Rolo from the KIT in Karlsruhe. “During that time, the object is rotated in the path of the X-ray and imaged from various directions. After the measurement, we can digitally reconstruct the three-dimensional object.”

Reconstruction allows for a modern description

This digital reconstruction of one beetle-specimen quickly showed that it was a male animal. “The genitals have been preserved, for the most part,” says biologist Dr. Heiko Schmied from the University of Bonn. “That gives us an opportunity to describe the beetle as a representative sample according to modern standards.” Beetle species in particular are often classified based on the shape of their genitalia.

An evolutionary analysis allowed the researchers to re-evaluate how the fossilized beetle species fit into the family of hister beetles (Histeridae), a family that still exists today. “I have never seen the inside of a hister beetle in such detail before,” remarks Dr. Michael Caterino from Clemson University, South Carolina. In addition to the well-preserved genitalia, this specimen also shows mouth parts and the throat, the gastrointestinal tract and the complex respiratory system.

“A diamond in the rough”

The scientists discovered that the outwardly unpromising beetle fossils had internal organs that were amazingly well preserved. The precise detail in the fossilized beetles goes well beyond what is normally seen in fossilized arthropods. “The unusually well-preserved soft tissue shows that the beetles must have become petrified within a very short amount of time, probably hours or days,” explains Dr. Schwermann.

One beetle specimen that is partly embedded in the rock shows the outer structure of the carapace. The attached rock thus conveys what the beetle’s outer shell originally looked like. “Surprisingly, the beetle that looks the least well preserved from the outside has the best level of preservation inside,” says biologist Dr. Thomas van de Kamp from the KIT in Karlsruhe. The attached rock protected even its fragile extremities from being destroyed by external environmental influences.

Unexpected potential in old collections

While the fossilized arthropods from Quercy in France were considered less interesting during their initial study in the 1940s, this old collection turns out to be a rich source of information. “That makes us, as researchers, look at the old collections in museums and universities in a new way,” says Dr. Schwermann. The research team now plans to study other similarly preserved fossils. The fact that the Quercy beetles had been largely ignored for 70 years highlights the unrecognized potential of old collections.

Publication: Achim H. Schwermann, Tomy dos Santos Rolo, Michael S. Caterino, Günter Bechly, Heiko Schmied, Tilo Baumbach and Thomas van de Kamp: Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference; “eLife”; DOI: 10.7554/eLife.12129
Media contact:

Dr. Achim H. Schwermann
Steinmann Institute
University of Bonn
Tel: +49-228-733102
Email: achim.schwermann@uni-bonn.de

Weitere Informationen:

http://dx.doi.org/10.7554/eLife.12129 Publication online

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>