Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil and molecular evidence reveals the history of major marine biodiversity hotspots

07.08.2008
- International experts have described three major marine biodiversity hotspots in the last 50 million years, from the oldest, peaked in southwest Europe and northwest Africa, to the the modern Indo-Australian Archipelago hotspot.
- The birth, evolution and death of such hotspots are a product of ecological processes operating over geological time scales of millions of years.

- To what extent is human activity speeding the evolutionary process of the focus with the highest level of biological diversity, the coral reef ecosystems?

The journal Science has published in the issue of the 1st of August the results of a detailed research work about the evolution of marine diversity all through the last 50 million years. The study has been carried out with the participation of scientists from Australia, Spain, USA, UK, Holland, Malaysia and Panama.

The results obtained prove that the main concentrations of biodiversity have been located in the last 50 million years in a line, from west to east, from southwest Europe and northwest Africa to the Indo-Australian Archipelago, and along the eastern shore of the Arabian Peninsula, Pakistan, and West India.
The researchers, among which is the Professor of the University of Granada (Spain) Juan Carlos Braga, have based this work on the study of the combination of molecular evidence and the fossil record.

At present, the Indo-Australian Archipelago (IAA) is the tropical center of maximum diversity since the Miocene and in the last 20 million years, as the record of large benthic foraminifera, mangrove pollen types, gastropods, and corals has shown.

The research proves the amazing antiquity of the IAA focus, which provides a new understanding of biodiversity hotspots, product of ecological processes operating over geological time scales of millions of years with their timing and locations coinciding with major tectonic events. The birth and death of successive hotspots highlights the link between environmental change and biodiversity patterns..

Vulnerability of coral reef ecosystems

A synthesis of the paleontological and molecular data, interpreted in an ecological context, has enabled the scientists to understand the true antiquity of hotspots and their component species. However, future studies are clearly needed as global threats to marine biodiversity put the spotlight on the vulnerability of coral reef ecosystems.

We now realize that human-induced changes are operating on time scales far removed from those that have created these hotspots. An improved understanding of the nature of biodiversity hotspots, be they terrestrial or marine, will require a clearer understanding of the Geographic and environmental context of taxonomic turnover driving the origination, maintenance, and diminution of hotspots over extensive time scales.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>