Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil evidence casts doubt on Younger Dryas impact theory

17.06.2010
New findings challenge a theory that a meteor explosion or impact thousands of years ago caused catastrophic fires over much of North America and Europe and triggered an abrupt global cooling period, called the Younger Dryas.

Whereas proponents of the theory have offered “carbonaceous spherules” and nanodiamonds—both of which they claimed were formed by intense heat—as evidence of the impact, a new study concludes that those supposed clues are nothing more than fossilized balls of fungus, charcoal, and fecal pellets.

Moreover, these naturally-occurring organic materials, some of which had likely been subjected to normal cycles of wildfires, date from a period of thousands of years both before and after the time that the Younger Dryas period began – further suggesting that there was no sudden impact event.

“People get very excited about the idea of a major impact causing a catastrophic fire and the abrupt climate change in that period, but there just isn’t the evidence to support it,” says Andrew C. Scott of the Department of Earth Sciences at Royal Holloway, University of London, who led the research.

The findings by Scott and his colleagues have been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union (AGU). The research team included scientists from England, Switzerland, and the United States.

The Younger Dryas impact event theory holds that a very large meteor struck Earth or exploded in the atmosphere about 12,900 years ago, causing a vast fire over most of North America, which contributed to extinctions of most of large animals on the continent and triggered a thousand-year-long cold period. While there is much previous evidence for the abrupt onset of a cooling period at that time, other researchers have theorized that the climatic change resulted from increased freshwater in the ocean, changes in ocean and atmospheric circulation patterns, or other causes unrelated to impacts.

The impact-theory proponents point to a charred layer of sediment filled with organic material that they say is unique to that period as evidence of such an event. These researchers described carbon spheres, carbon cylinders, and charcoal pieces that they conclude are melted and charred organic matter created in the intense heat of a widespread fire.

Scott and his fellow researchers analyzed sediment samples to determine the origins of the carbonaceous particles. After comparing the fossil particles with modern fungal ones exposed to low to moderate heat (less than 500 degrees Celsius, or 932 degrees Fahrenheit), Scott’s group concludes that the particles are actually balls of fungal material and other ordinary organic particles, such as fecal pellets from insects, plant or fungal galls, and wood, some of which may have been exposed to regularly-occurring low-intensity wildfires.

The researchers used microscopic analysis of particles from the Pleistocene-Holocene sediments collected from the California Channel Islands and compared them with modern soil samples that had been subjected to wildfires, as well as balls of stringy fungal material, called sclerotia, some of which were also subjected to a range of temperatures in a laboratory. Many soil and plant fungi produce sclerotia – tough balls of cells that are usually 0.5 millimeters to 2 millimeters in size (0.02 inches to 0.08 inches) – as a way to survive periods of harsh conditions. Their shape can vary from spherical to elongated, and their internal structures, which can take on a spongy or honeycomb pattern, matches the descriptions given by Dryas- impact event proponents.

Further, the group studied the amount of light reflected by the fossil spherules and wood charcoal from the sediment layers that included the Dryas period. The researchers used the reflectance of the organic material to determine the amount of heat to which it had been subjected. They found that the fossilized matter was unlikely to have been exposed to temperatures above 450 degrees Celsius (842 degrees Fahrenheit). Radiocarbon dating also showed that the particles, taken from several layers, ranged in age from 16,821 to 11,467 years ago. Proponents of the impact theory had reported that the spherules they found in the Younger Dryas sediment layer dated to a very narrow time period of 12,900 to 13,000 years before present.

“There is a long history of fire in the fossil record, and these fungal samples are common everywhere, from ancient times to the present,” Scott says. “These data support our conclusion that there wasn’t one single intense fire that triggered the onset of the cold period.”

Funding for this research was provided by the National Geographic Society, the National Science Foundation, the Royal Society of London, the Royal Holloway strategy fund, the Natural Environmental Research Council, and the Integrated Infrastructure Initiative on Synchrotrons and Free Electron Lasers.

AGU Media Contact: Kathleen O’Neil, Public Information Specialist: 202.777.7524, koneil@agu.org

Kathleen O’Neil | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>