Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil deep water sponges are similar to modern sponge assemblages

19.11.2015

German-Chinese team of scientists studies 445 million year old sediments

Fossils and sediments from deep sea zones of some thousand meters are extremely rare. Therefore, biodiversity and evolution of life in those zones are rarely explored. A German-Chinese team of scientists with participation from Göttingen University has analysed about 445 million year old shale sediments in Anhui province, South China.


Conceptual model of migration of sponges to relatively shallow water to escape from anoxic and sulphidic water (white arrow) and burial by mud turbidites (red arrow).

Image: Lixia Li und Joachim Reitner

The scientists found fossil sponge assemblages which migrated from deep water to higher ecological sea zones and which are similar to modern deep sea sponges. The results were published in Scientific Reports.

The great ice-age 445 million years ago resulted in massive ecological changes and a mass extinction of marine life. With the start of the so called recovery, the deep water sponge assemblages moved to a much higher located zone with relatively shallow water, the shelf.

“We assume that the sponges escaped from the then anoxic and sulphidic deep water”, Göttingen geobiologist Prof. Dr. Joachim Reitner says. In addition, on the shelf the sponges were buried rapidly by mud turbidities. Due to migration and burial the fossils in the analysed sediments are well-preserved, so that the scientists are the first to record sponge fossils in China.

The fossils match with modern deep water sponge assemblage. The observed assemblage is dominated by lyssakine “soft” hexactinellids (60 percent) that are typically found in deep zones of the sea. Some of them match morphologically with modern Rosella-types often found in Antarctic deep water.

Modern characteristics were found in a second group of sponges found by the scientists called demospongiae.

“These many matches show the extreme steadiness of ecological zones in deep water. This explains why the evolution of organism assemblages is slow”, Prof. Reitner says. “After the total recovery of the ecosystem the sponges re-moved to deep water zones. Those temporary movements in ecological zones are also known from other mass extinctions.”

The geobiological research in South China is a cooperation of the Faculty of Geosciences and Geography, Department of Geobiology, of Göttingen University with the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Science and the School of Earth Sciences and Engineering of Nanjing University. The research project was embedded in the “Göttingen-Nanjing Geobiology Lectures” to promote research-led teaching.

Original publication:
Lixia Li, Hongzhen Feng, Dorte Janussen, Joachim Reitner (2015): Unusual Deep Water sponge assemblage in South China – Witness of the end-Ordovician mass extinction. Scientific Reports, 5:16060, doi: 10.1038/srep16060, http://www.nature.com/articles/srep16060

Contact address:
Prof. Dr. Joachim Reitner
University of Göttingen
Faculty of Geosciences and Geography – Geobiology
Goldschmidtstrasse 3, 37073 Göttingen
Phone: +49 (0)551 39-7950
Mail: jreitne@gwdg.de
Website: www.geobiologie.uni-goettingen.de

Weitere Informationen:

http://www.nature.com/articles/srep16060
http://www.geobiologie.uni-goettingen.de

Romas Bielke | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht The pace at which the world’s permafrost soils are warming
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>