Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017

Reefs near Texas endured punctuated bursts of sea-level rise before drowning

Scientists from Rice University and Texas A&M University-Corpus Christi's Harte Research Institute for Gulf of Mexico Studies have discovered that Earth's sea level did not rise steadily but rather in sharp, punctuated bursts when the planet's glaciers melted during the period of global warming at the close of the last ice age. The researchers found fossil evidence in drowned reefs offshore Texas that showed sea level rose in several bursts ranging in length from a few decades to one century.


The Schmidt Ocean Institute's research vessel Falkor mapped 10 fossil reef sites offshore Texas with the latest generation of multibeam echo sounder, a state-of-the-art sonar that produces high-resolution 3-D images of the seafloor. (Photo courtesy of Schmidt Ocean Institute)

Credit: Schmidt Ocean Institute

The findings appear today in Nature Communications.

"What these fossil reefs show is that the last time Earth warmed like it is today, sea level did not rise steadily," said Rice marine geologist André Droxler, a study co-author. "Instead, sea level rose quite fast, paused, and then shot up again in another burst and so on.

"This has profound implications for the future study of sea-level rise," he said.

Because scientists did not previously have specific evidence of punctuated decade-scale sea-level rise, they had little choice but to present the risks of sea-level rise in a linear, per-year format, Droxler said. For example, the International Panel on Climate Change, the authoritative scientific source about the impacts of human-induced climate change, "had to simply take the projected rise for a century, divide by 100 and say, 'We expect sea level to rise this much per year,'" he said.

"Our results offer evidence that sea level may not rise in an orderly, linear fashion," said Rice coastal geologist and study co-author Jeff Nittrouer.

Given that more than half a billion people live within a few meters of modern sea level, he said punctuated sea-level rise poses a particular risk to those communities that are not prepared for future inundation.

"We have observed sea level rise steadily in contemporary time," Nittrouer said. "However, our findings show that sea-level rise could be considerably faster than anything yet observed, and because of this situation, coastal communities need to be prepared for potential inundation."

The study's evidence came from a 2012 cruise by the Schmidt Ocean Institute's research vessel Falkor. During the cruise, Droxler, study lead author and Rice graduate student Pankaj Khanna and Harte Research Institute colleagues John Tunnell Jr. and Thomas Shirley used the Falkor's multibeam echo sounder to map 10 fossil reef sites offshore Texas. The echo sounder is a state-of-the-art sonar that produces high-resolution 3-D images of the seafloor.

The fossil reefs lie 30-50 miles offshore Corpus Christi beneath about 195 feet of water. Sunlight does not reach them at that depth, but because corals live in symbiosis with algae, they need sunlight to live and only grow at or very near sea level. Based on previous studies of the Texas coastline during the last ice age as well as the dates of fossils samples collected from the reefs in previous expeditions, the Rice team surmised that the reefs began forming about 19,000 years ago when melting ice caps and glaciers were causing sea level to rise across the globe.

"The coral reefs' evolution and demise have been preserved," Khanna said. "Their history is written in their morphology -- the shapes and forms in which they grew. And the high-resolution 3-D imaging system on the R/V Falkor allowed us to observe those forms in extraordinary detail for the first time."

All the sites in the study had reefs with terraces. Khanna said the stair-like terraces are typical of coral reef structures and are signatures of rising seas. For example, as a reef is growing at the ocean's surface, it can build up only so fast. If sea level rises too fast, it will drown the reef in place, but if the rate is slightly slower, the reef can adopt a strategy called backstepping. When a reef backsteps, the ocean-facing side of the reef breaks up incoming waves just enough to allow the reef to build up a vertical step.

"In our case, each of these steps reveals how the reef adapted to a sudden, punctuated burst of sea-level rise," Khanna said. "The terraces behind each step are the parts of the reef that grew and filled in during the pauses between bursts."

Some sites had as many as six terraces. The researchers said it's important to note that even though the sites in the study are as much as 75 miles apart, the depth of the terraces lined up at each site. Droxler and Nittrouer credited the find to Khanna's determination. Analysis of the data from the mapping mission took more than a year, and the time needed to respond to questions that arose during the publication's peer-review process was even longer.

"That's the way science works," Droxler said. "This is the first evidence ever offered for sea-level rise on a time scale ranging from decades to one century, and our colleagues expected ironclad evidence to back that claim."

Nittrouer said the scenario of punctuated sea-level rise is one that many scientists had previously suspected.

"Scientists have talked about the possibility that continental ice could recede rapidly," he said. "The idea is that sudden changes could arise when threshold conditions are met -- for example, a tipping point arises whereby a large amount of ice is released suddenly into global oceans. When melted, this adds water volume and raises global sea level."

Khanna said it's likely that additional fossil evidence of punctuated sea-level rise will be found in the rock record at sites around the globe.

"Based on what we've found, it is possible that sea-level rise over decadal time scales will be a key storyline in future climate predictions," he said.

###

The research was supported by Rice University, the Harte Research Institute at Texas A&M University-Corpus Christi and the Schmidt Ocean Institute.

VIDEO is available at: https://youtu.be/jv9VA797Veo

High-resolution IMAGES are available for download at:

http://news.rice.edu/files/2017/09/0918_SEALEVEL-falkor2-lg-1fcgljx.jpg CAPTION: The Schmidt Ocean Institute's research vessel Falkor mapped, with the latest generation of multibeam echo sounder, 10 fossil reef sites offshore Texas. The echo sounder is a state-of-the-art sonar that produces high-resolution 3-D images of the seafloor. (Photo courtesy of Schmidt Ocean Institute)

http://news.rice.edu/files/2017/09/0918_SEALEVEL-tri-lg-16metod.jpg CAPTION: Rice University researchers (from left) Pankaj Khanna, André Droxler and Jeffrey Nittrouer. (Photo by Jeff Fitlow/Rice University)

http://news.rice.edu/files/2017/09/0918_SEALEVEL-terrace-lg-2b7v64b.jpg CAPTION: A high-resolution 3-D map of Southern Bank off the South Texas coast clearly reveals terraces, which are a characteristic coral reef response to rising sea level. (Image courtesy of P. Khanna/Rice University)

http://news.rice.edu/files/2017/09/0918_SEALEVEL-adpk-lg-xosxri.jpg CAPTION: André Droxler (seated) and Pankaj Khanna aboard the Schmidt Ocean Institute's research vessel Falkor in 2012. (Photo by Mark Schrope/Schmidt Ocean Institute)

http://news.rice.edu/files/2017/09/0918_SEALEVEL-backstep2-lg-28xb8xx.jpg CAPTION: A 3-D representation of Dream Bank, a long-dead reef offshore South Texas. The vertical scale of the image has been increased to clearly illustrate the terrace structures that form due to rising sea levels via a process known as backstepping. (Image courtesy of P. Khanna/Rice University)

http://news.rice.edu/files/2017/09/0918_SEALEVEL-three-lg-1damwin.jpg CAPTION: Rice researchers (from left) Caleb McBride, André Droxler and Pankaj Khanna aboard the Schmidt Ocean Institute's research vessel Falkor in 2012. (Photo courtesy of A. Droxler/Rice University)

The DOI of the Nature Communications paper is: 10.1038/s41467-017-00966-x

A copy of the paper is available at: http://dx.doi.org/10.1038/s41467-017-00966-x

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

Jade Boyd
jadeboyd@rice.edu
713-348-6778

 @RiceUNews

http://news.rice.edu 

Jade Boyd | EurekAlert!

Further reports about: coral reef coral reefs echo sounder fossil evidence ice age sea level sea-level rise

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>