Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fortuitous Research Provides First Detailed Documentation of Tsunami Erosion

29.10.2009
Tsunamis are among the most-devastating natural calamities. These earthquake-generated waves can quickly engulf low-lying land and bring widespread destruction and death. They can deposit sand and debris far inland from where they came ashore.

Now, for the first time, a group of scientists working in the Kuril Islands off the east coast of Russia has documented the scope of tsunami-caused erosion and found that a wave can carry away far more sand and dirt than it deposits.

The fortuitous observations resulted because the Kuril Biocomplexity Project had made detailed surveys of some Kuril Island coastlines during the summer of 2006, and then returned for additional work in the summers of 2007 and 2008. That provided a unique opportunity for before-and-after comparisons following a magnitude 8.3 earthquake and accompanying tsunami on Nov. 15, 2006, and an 8.1 quake and resulting tsunami on Jan. 13, 2007.

When the scientists revisited coastlines they had surveyed in 2006, they found that in some places the amount of sand and soil removed by tsunami erosion was nearly 50 times greater than the amount deposited.

"It was so extreme. I was really surprised," said Breanyn MacInnes, a University of Washington doctoral student in Earth and space sciences.

The team observed shorelines stripped of vegetation, small hills of soil and volcanic cinders washed away to expose boulders and, in one place, the unearthed rusty remnants of military equipment left behind at the end of World War II.

"We were there the year before and it had been completely covered with vegetation, and there were ridges closer to shore that had been completely removed when we returned," MacInnes said.

She is the lead author of a paper describing the observed differences in erosion and deposition, published in the November issue of the journal Geology. Co-authors are Joanne Bourgeois, a UW professor of Earth and space sciences and MacInnes' doctoral adviser, and Tatiana Pinegina and Ekaterina Kravchunovskaya of the Far East Branch of the Russian Academy of Sciences. The work was funded by the National Science Foundation and the Russian Academy of Sciences Institute of Marine Geology and Geophysics.

The Nov. 15, 2006, Kurils earthquake was large enough to raise alarms about the potential for a tsunami throughout the Pacific basin. Only very tiny waves were recorded on the Japanese island of Hokkaido, relatively near the Kurils. However, a tsunami nearly 6 feet high did more than $10 million damage to the harbor at Crescent City, Calif., some 4,500 miles away.

The Kurils themselves were hit by tsunami waves more than 70 feet high in some places, and changes in topography were dramatic.

The amount of erosion from a tsunami depends somewhat on the topography of the land, but definitely is related to the force of the wave, the scientists found. They noted that an area called South Bay on Matua Island lost about 50 cubic meters, or about 1,765 cubic feet, of sediment per meter of width, while an area called Ainu Bay lost an astounding 200 cubic meters, or about 7,060 cubic feet, of sediment per meter of width because of tsunami-induced erosion.

At a spot called Dushnaya Bay, where the tsunami was at a relatively low elevation at its greatest distance from shore, the biggest change occurred on the sandy beach, with about 5 cubic meters, or about 177 cubic feet, of sediment eroded per meter of width.

In other areas, relatively fine volcanic sand from the shore and much coarser volcanic cinders unearthed from ridges were deposited well inland, but the amount of sediment deposited was far less than the amount eroded, the researchers found.

Some of the landscape scars will remain visible for decades, or even centuries, the scientists reported. For example, along Ainu Bay ridges were removed, depressions were scoured into the topography and a lake was breached and drained.

"One thing we really noticed was that anywhere there had been human disturbance, like the remnants of a military base or even just a fencepost, there was always some sort of blowout or deeper erosion," MacInnes said.

She noted that geologists have long considered erosion to be an important factor in studying tsunamis.

"There are a lot of papers that describe erosion but they can't really quantify it. Our study is the first to say, 'This much sand was removed from the coast,'" she said.

"This emphasizes that erosion is something to consider when assessing a community's risks and vulnerability."

For more information, contact MacInnes at 206-437-2659, 206-543-6686 or macinneb@uw.edu.

NOTE: High-resolution images are available through this release at http://uwnews.org/article.asp?articleID=53117.

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>