Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finger on the pulse of wetlands

25.06.2012
Many wetlands are difficult to observe over a long period. The reason for this is that the volume of water they channel varies all the time. Scientists from the University of Würzburg are now proposing a new method that allows wetland dynamics to be measured for the first time.
Wetlands like the Okavango Delta in southern Africa play an important role ecologically and economically. Not only do they provide a habitat for numerous species of animals and plants, they also have benefits for people. Often they are the only major water reservoir in an otherwise dry landscape. They also attract tourists and as such contribute to the livelihoods of local inhabitants.

Recording changes in wetlands

What impact will climate change have on such wetlands in Africa? It is predicted that this continent will become hotter and drier as a result of global changes. This might make the wetlands even more important in their role as water stores. But it might also completely dry them out.

“We need to be able to take the ‘pulse’ of the wetlands continuously so that we can observe changes and introduce any necessary countermeasures,” says Dr. Tobias Landmann from the University of Würzburg. This geographer, with his colleagues Christian Hüttich, Matthias Schramm, and Stefan Dech, has now made it possible to do this for the very first time. The journal “Remote Sensing Letters” presents the scientists’ method in its latest issue.

Finger on the pulse of the Linyanti Wetlands

The researchers chose the Linyanti Wetlands as their study object. This area is roughly 40 by 60 kilometers in size and lies in the east of Namibia on the border with Botswana, right in the middle of the dry savannah. It is fed by the Kwando River, which flows into a large delta in the Linyanti region, creating a considerable landscape of rivers and lakes.

How can we take the “pulse” of the Linyanti region continuously? Landmann and his colleagues have succeeded in doing this using image data from the NASA satellite MODIS. The satellite supplied high-resolution images of these African wetlands on an almost daily basis between 2001 and 2010. They clearly show the degree of flooding and the vitality of the vegetation, which are precisely the factors that interested the researchers since they wanted to know the following: how moist and green was Linyanti during this period, how did this fluctuate over the course of a year, and how did this vary from one year to another?

The Würzburg scientists took the satellite data and applied the so-called vector method to calculate the intensity and direction of the changes. This revealed that in some years the Linyanti region was drier, while in others it was more moist again. But, on the whole, the region became considerably more moist from 2001 to 2010.

“However, this does not allow any reliable statement regarding climate change because the time frame of just ten years is much too short,” says Landmann. This would require considerably longer time series. Such long-term measurements can now be undertaken for the earth’s wetlands for the first time – thanks to the wealth of satellite data available and thanks to the new method from Würzburg.

“MODIS based change vector analysis for assessing wetland dynamics in Southern Africa”, T. Landmann, M. Schramm, C. Huettich, and S. Dech, Remote Sensing Letters, published online 20 June 2012, DOI: 10.1080/2150704X.2012.699201

Contact

Dr. Tobias Landmann, Department of Remote Sensing, Institute of Geography and Geology at the University of Würzburg, T +49 (0)931 31-81869, tobias.landmann@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: African public sector Linyanti Remote Wetlands global change satellite data

More articles from Earth Sciences:

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

nachricht The Antarctica Factor: model uncertainties reveal upcoming sea-level risk
14.02.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>