Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on the developments of the earthquake disaster

17.03.2011
The earthquake disaster on March 11 - scientific evaluation

The earthquake disaster on 11 March 2011 was an event of the century not only for Japan. With a magnitude of Mw = 8.9, it was one of the strongest earthquakes ever recorded worldwide. Particularly interesting is that here, two days before, a strong foreshock with a magnitude Mw = 7.2 took place almost exactly at the breaking point of the tsunami-earthquake. The geophysicist Joachim Saul from the GFZ German Research Centre for Geosciences (Helmholtz Association) created an animation which shows the sequence of quakes since March 9.

The animated image is available at www.gfz-potsdam.de . It shows the earthquake activity in the region of Honshu, Japan, measured at the GFZ since 8 March 2011. After a seismically quiet 8th March, the morning (coordinated universal time UTC) of the March 9 began with an earthquake of magnitude 7.2 off the Japanese east coast, followed by a series of smaller aftershocks. The morning of March 11 sees the earthquake disaster that triggered the devastating tsunami. This earthquake is followed by many almost severe aftershocks, two of which almost reach the magnitude 8. In the following time period the activity slowly subsides, and is dominated today (March 16) by relatively small magnitude 5 quakes, though several earthquakes of magnitude 6 are being registered on a daily basis. The activity of aftershocks focuses mainly on the area of the March 11 earthquake. Based on the distribution of the aftershocks, the length of the fraction of the main quake can be estimated at about 400 km. Overall, 428 earthquakes in the region of Honshu were registered at the GFZ since March 9.

By analysing over 500 GPS stations, the GFZ scientists Rongjiang Wang and Thomas Walter have found that horizontal displacements of up to five meters in an eastern direction occurred at the east coast of Japan. The cause lies in the earthquake zone, i.e. at the contact interface of the Pacific plate with Japan. Computer simulations of this surface show that an offset of up to 25 meters occurred during the earthquake. Calculations of the GFZ modeling group headed by Stephan Sobolev even yielded a displacement of up to 27 meters and a vertical movement of seven meters. This caused an abrupt elevation in the deep sea, and thus triggered the tsunami. The images of the GPS displacement vectors and the computer simulations can also be found among the online material provided by the GFZ.

Already shortly after the quake Andrey Babeyko and Stephan Sobolev of the GFZ modeled the propagation and wave heights of the tsunami in the Pacific over the first 16 hours. The tremendous force of the earthquake is highlighted here, too: in the open Pacific, relatively large wave heights of over one meter were calculated, which agrees very well with the observations. How high the tsunami is piled up on the coast is largely determined by water depth and the shape of the coastline. The GFZ material also contains an image and an animation regarding this work.

Click here for further information:
www.gfz-potsdam.de/portal/gfz/Public+Relations/M40-Bildarchiv/001_+Japan
Also the other research centres of the Helmholtz Association offer information on the catastrophe in Japan: www.helmholtz.de/japan

F. Ossing | EurekAlert!
Further information:
http://www.gfz-potsdam.de
http://www.gfz-potsdam.de/portal/gfz/Public+Relations/M40-Bildarchiv/001_+Japan
http://www.helmholtz.de/japan

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>