Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Field experiment on brine injection in geological CO2 storage

07.01.2016

Final phase of successful geological storage of carbon dioxide. In the current field experiment, brine was continuously injected since 12th of October, 2015, into the CO2 reservoir, a porous sandstone layer located at a depth between 630 m and 650 m.

A field experiment on brine injection at the pilot site Ketzin/Havel, operated by the German Research Centre for Geosciences (GFZ), ended successfully on 6th of January, 2016. It marks the last field experiment with respect to the geological storage of CO2 at Ketzin.

In the current field experiment, brine was continuously injected since 12th of October, 2015, into the CO2 reservoir, a porous sandstone layer located at a depth between 630 m and 650 m. During 88 days, almost 2,900 tonnes of brine were pumped into the CO2 storage.

The brine has a chemical composition comparable to the brine that naturally occurs in the reservoir rocks. The brine was delivered by tank trucks whereby several containers were used for the intermediate storage.

The GFZ pilot's location Ketzin accommodates Europe`s biggest research project related to the geologic storage of the greenhouse gas carbon dioxide. Since 2008, more than 67,000 tonnes of CO2 were stored in the underground in order to investigate this approach towards greenhouse gas reduction. The stored carbon dioxide replaced the salty natural pore water.

However, for a long-term storage it is expected that this pore water will flow back into the reservoir rock and mix with the injected CO2. The brine injection experiment simulated this natural backflow and the associated displacement of the CO2 in time-lapse mode.

Two main objectives were pursued in this regard: On the one hand it should be determined how much of the CO2 residing in the pore space can be displaced by the injected brine. On the other hand it should be examined which differences exist between the displacement of the formation fluids by CO2 during the CO2 injection and the displacement of the CO2 by brine during the brine injection.

Besides, the experiment is also another safety test: it is examined whether the brine injection is suitable as a possible remediation technique in case of a CO2 leakage by displacing the CO2 from the pores of the reservoir rock in the near wellbore area. “Our overall research results have shown that the geologic storage of carbon dioxide is a reliable and feasible way at adequate scientific and technical assistance“, according to Axel Liebscher, head of the section Geologic Storage at GFZ.

„The new findings on the brine and gas behaviour are central metrics in assessing the long-term behaviour and safety of CO2 storage. With the recent field experiment, we are now able for the first time to verify and validate the data on residual CO2 saturation, usually only derived from lab tests, under real geological conditions.“

The propagation of the injected brine and the associated displacement of the stored CO2 near the wellbore have been simulated before the field experiment started and it was monitored during the experiment in particular by aid of a geoelectric measuring system which recorded the electrical conductivity in the underground.

This monitoring network, which was already installed behind the casings in 2007 before the beginning of the real CO2 injection, permits conclusions on the spatial distribution of brine and CO2. Beside the geoelectric measurements, the field test was accompanied by continuous monitoring of pressure and temperature conditions in the injection well as well as in two neighbouring observation wells.

Already in October, 2014, another field experiment had been carried out successfully on the back production of CO2 from the storage reservoir. The operative life cycle of the CO2 storage in Ketzin is now finished within the running project COMPLETE.

In current year 2016, the remaining four wells will be backfilled successively and the site will be re-cultivated. The life cycle of the storage site ends finally with the return of the liability from GFZ to the mining authority of the federal state of Brandenburg after the integrity of the storage complex has been proved.

„Together with the knowledge from the active CO2 injection, both field experiments, the back production and the brine injection, enable us to understand the processes before, during and after a CO2 storage in detail and to prove the functionality and integrity of the CO2 storage at Ketzin“, Axel Liebscher concludes.

More information on the pilot site Ketzin can be found on the website: http://www.co2ketzin.de

Photo in printable solution may be found here:
https://media.gfz-potsdam.de/gfz/wv/05_Medien_Kommunikation/Bildarchiv/CO2MAN_CO...

Caption: Delivery and intermediate storage of brine for a continuously injection into a depth of 630 m, October 2015 (Photo: T. Kollersberger, GFZ)

Dipl.Met. Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Further reports about: CO2 CO2 injection CO2 storage GFZ Helmholtz-Zentrum carbon dioxide greenhouse gas

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

Stanford researcher deciphers flows that help bacteria feed and organize biofilms

13.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>