Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme summer temperatures occur more frequently

16.02.2012
Extreme summer temperatures are already occurring more frequently in the United States, and will become normal by mid-century if the world continues on a business as usual schedule of emitting greenhouse gases.

By analyzing observations and results obtained from climate models, a study led by Phil Duffy of the Lawrence Livermore National Laboratory showed that previously rare high summertime (June, July and August) temperatures are already occurring more frequently in some regions of the 48 contiguous United States.


The white colored rock (approximately 100 feet high) shows the drop in the water level of Lake Mead as a result of the ongoing 10-year drought along the Colorado River. Photo courtesy of Guy DeMeo , U.S. Geological Survey


The Vegetation Drought Response Index (VegDRI) incorporates satellite observations of vegetation to monitor at a finer spatial detail than other commonly used drought indicators. Photo courtesy of U.S. Geological Survey

"The observed increase in the frequency of previously rare summertime-average temperatures is more consistent with the consequences of increasing greenhouse gas concentrations than with the effects of natural climate variability," said Duffy, who is the lead author of a report in a recent edition of the journal, Climatic Change. "It is extremely unlikely that the observed increase has happened through chance alone."

The geographical patterns of increases in extreme summer temperatures that appear in observations are consistent with those that are seen in climate model simulations of the 20th century, Duffy said.

Duffy and colleague Claudia Tebaldi, a senior scientist at the nonprofit news and research group Climate Central, showed that the models project that previously rare summer temperatures will occur in well more than 50 percent of summers by mid-century throughout the lower 48 states.

The team first compared the period 1975-2000 to the preceding 25 years, and found that both observations and results based on 16 global climate models show that summertime-average temperatures that were rare in the earlier period occurred more often in the later period, in certain regions. The agreement between observations and models demonstrates that the models are able to simulate changes in the occurrence of extreme summertime temperatures, Duffy said.

Duffy and Tebaldi performed a statistical analysis showing that the increases in rare summer temperatures seen in the later period are very unlikely to have occurred through chance weather variations.

Next, Duffy and Tebaldi assessed the present period, by using results obtained from climate models for 1995-2024; they found that summer temperatures that were extreme during 1950-1979 occur more often in the later time period. This supports the conclusion that extreme summertime temperatures are already occurring more frequently in parts of the lower 48 states. A second statistical analysis showed that this increase also is very unlikely to be due to chance weather variations alone, such as El Ninos or La Ninas.

Finally, the team evaluated model results for 2035-2064 (representing the middle of this century) and found that extreme summertime temperatures that were rare during 1950-1979 are projected to occur in most summers throughout the 48-state region in the mid-century period. For the mid-century, summertime mean temperatures that historically occurred only 5 percent of the time are projected to occur at least 70 percent to the time everywhere in the 48 state region.

"The South, Southwest and Northeast are projected to experience the largest increases in the frequency of unusually hot summers," Duffy said. "The strong increase in extremes in the Southwest and Northeast are explained by strong historical and projected warming there. This result is based upon assuming a commonly used scenario for future emissions of carbon dioxide, the main driver of human-caused climate change.

"What was historically a one in 20-year occurrence will occur with at least a 70 percent chance every year. This work shows an example of how climate change can affect weather extremes, as well as averages."

More Information

"Increasing prevalence of extreme summer temperatures in the U.S.," Climatic Change.

"Strengthening our understanding of climate change," Science & Technology Review, December 2010.

"Livermore Scientists Create Highest Resolution Global Climate Simulations To Date Using Supercomputers," LLNL news release, July 9, 2002.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht In the Arctic, spring snowmelt triggers fresh CO2 production
06.07.2020 | San Diego State University

nachricht The latest findings on the MOSAiC floe
06.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shock-dissipating fractal cubes could forge high-tech armor

08.07.2020 | Materials Sciences

Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents

08.07.2020 | Health and Medicine

'Growing' active sites on quantum dots for robust H2 photogeneration

08.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>