Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring one of the largest salt flats in the world

27.07.2016

UMass Amherst researchers find Chilean salt flat drains a surprisingly vast area

A recent research report about one of the largest lithium brine and salt deposits in the world in Chile's Atacama Desert by geoscientists from the University of Massachusetts Amherst is the first to show that water and solutes flowing into the basin originate from a much larger than expected portion of the Andean Plateau.


UMass Amherst graduate student Lilly Corenthal making notes at one of the largest lithium brine and salt deposits in the world, a deposit 3,900 feet thick in Chile's Atacama Desert, with the Andes Mountains in the background. The basin drains a surprisingly larger area of the Andean Plateau than geoscientists had expected.

Credit: UMass Amherst

The astonishingly massive evaporite deposit, 3,900 feet (1,200 m) thick, appears to be draining an area far larger than a map-based or topographic watershed would suggest, says lead hydrologist David Boutt.

The brine volume present, contrasted with the relatively small surface drainage in such an arid area, poses fundamental questions about both the hydrologic and solute budgets at plateau margins, that is the relationship between input and accumulation, the authors say. Their answers should aid understanding of the water and mineral resources in one of the world's driest regions.

As Boutt explains, "The amazing finding is the fact that most of the water is originating from outside the topographic watershed, on the Andean Plateau, and it's draining an area four or five times bigger than the watershed. There is no outlet to this basin and it is capturing an unbelievably huge volume of water in an otherwise extremely arid environment." Details appear in a recent early online edition of Geophysical Research Letters.

Boutt and first author Lilly Corenthal, his former graduate student, say the physical and chemical connections between active tectonics, slopes, discharge zones and aquifers are not well characterized. In fact, they do not yet understand the conditions under which the massive evaporate deposit formed. Thus, the Chilean salt flat, Salar de Atacama, provides "a unique case-study to investigate questions about sub-surface fluid flow on the margins" of the Central Andean Plateau and others like it where mountain building forces are still active, they point out.

A drainage area that is several times larger than the topographic catchment is more common than people think, Boutt notes. "You can't assume that the surface catchment and ground water catchment are the same, and it tends not to happen in humid areas. But in dry areas--his is the driest non-polar desert in the world--the difference can be extensive, as it is in this case. And, this water is very, very old," he adds. In such closed basins, high concentrations of mineral deposits, in particular lithium brine, represent an increasingly important resource in high global demand.

The researchers collected 300 samples of freshwater and brine to analyze how much sodium is entering the basin. Boutt says, "knowing something about how much sodium is there now can help us reconstruct how much water must have been coming in over the 7 to 10 million years as the Andes plateau uplift was taking place. The high elevation regions of the Andes are like wicks pulling water out of the atmosphere and putting it into the basin," he adds.

They also used satellite precipitation data to "backsolve" the brine's origins using sodium concentrations, oxygen and hydrogen isotopes, as the isotopic composition of water reflects the condensation temperature and precipitation rate over time. The main controls are source of the moisture and condensation temperature, and whether or not the water has experienced evaporation, Boutt notes.

Media Contact

Janet Lathrop
jlathrop@umass.edu
413-545-0444

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

More articles from Earth Sciences:

nachricht Tiny satellites reveal water dynamics in thousands of northern lakes
15.02.2019 | Brown University

nachricht Artificial Intelligence to boost Earth system science
14.02.2019 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>