Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expansion of agricultural land reduces CO2 absorption

06.07.2018

Study about the impact of changes in land use on the concentration of carbon dioxide in the atmosphere -- publication in Environmental Research Letters

Climate change is heavily related to the increase of CO2 in the atmosphere. During photosynthesis, plants absorb some of the industrial CO2 emissions from the atmosphere, making them contribute significantly to climate protection.


New study suggests: The conversion of forests into agricultural land accelerates climate change.

Photo: Dr Anita Bayer, KIT/IMK-IFU

"The CO2 increase in the atmosphere is currently lower than to be expected from anthropogenic emissions," says Professor Almut Arneth from the Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU) at KIT Campus Alpin in Garmisch-Partenkirchen. 20 to 25 percent of the CO2 released by humans into the atmosphere is currently being absorbed by plants. "This effect curbs climate change; without it global warming would have progressed further by now," the scientist says. "The question is whether it will stay this way in the next few decades."

A research group led by Arneth and Dr Benjamin Quesada at IMK-IFU has dealt with the impact of changes in land use on the expected concentration of carbon dioxide - in other words CO2 projection - in the earth's atmosphere.

Their study titled "Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle" published in Environmental Research Letters shows that changes in land use have a significant impact on future CO2 absorption from the atmosphere.

If forests are cut down in favor of arable land and pasture land, it reduces the capacity of plants and soil to take up CO2. "The wood in a forest can store more CO2 than corn for example," explains Arneth who in her research deals with the interaction between the atmosphere, plants and soil.

If deforestation were to continue, it could even be expected that large parts of the tropics will change from a CO2 basin - which absorbs more CO2 than it releases - to a CO2 source.

Researchers at KIT have summarized the results of five common climate models and looked at seven variables for 25 world regions to better understand the extent to which different changes in land use have an impact on CO2 storage in vegetation, and as a result on the concentration in the atmosphere. The scenarios differ, for example, in how much leaf area there is in relation to soil area, how much the relevant plants grow, and how long a plant grows before it dies and releases CO2 into the atmosphere.

All the models were fed with the same assumptions to limit model-related uncertainties through the summary and detailed systematic analysis of the results. This makes the study more significant than previous investigations which were based only on individual models.

"We have shown how important it is to include the expansion of agricultural land in climate projections and to adapt the models; there is still a lot of room for improvement," says the environmental researcher. "This study confirms how important it is to work toward ensuring that deforestation in the tropics and globally is reduced or stopped," says Arneth.

###

Original publication

Benjamin Quesada, Almut Arneth, Eddy Robertson and Nathalie de Noblet: Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle. Environmental Research Letters, 2018. http://iopscience.iop.org/article/10.1088/1748-9326/aac4c3/meta External Link

More information on the KIT Climate and Environment Center: http://www.klima-umwelt.kit.edu External Link

Being „The Research University in the Helmholtz Association", KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,500 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

Media Contact

Monika Landgraf
presse@kit.edu
49-721-608-47414

 @KITKarlsruhe

http://www.kit.edu/index.php 

Monika Landgraf | EurekAlert!
Further information:
https://www.kit.edu/kit/english/pi_2018_074_expansion-of-agricultural-land-reduces-co2-absorption.php

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>