Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution and climate change in Southeast Africa

10.07.2018

High climate variability and increasing aridity brought an end to an early hominid species

Africa plays a prominent role in human evolution, and is considered by researchers to be the cradle of humanity. In the mid-20th century anthropologists found fossils of Paranthropus robustus in South Africa, which belongs to an evolutionary side branch of Homo sapiens. Paranthropus robustus lived around two million years ago but eventually died out.


The catchment area of the Limpopo River. Here lived an ancestor of man, Paranthropus robustus about two million years ago.

MARUM – Center for Marine Environmental Sciences, University of Bremen

Possible reasons for the extinction have now been brought to light by an international team of anthropologists and geoscientists led by Dr. Thibaut Caley of the University of Bordeaux. In this effort, the researchers, who include Dr. Lydie Dupont and Dr. Enno Schefuß of MARUM – Center for Marine Environmental Sciences at the University of Bremen combined various indicators to reconstruct the climatic conditions in southeast Africa at this time. The results were published in the professional journal Nature on July 9th.

The idea of combining different methods arose from a seeming contradiction: While climate records from northern Africa indicate that conditions were becoming more arid, data from Lake Malawi suggest exactly the opposite. Was it really true that southeast Africa became more humid as northern Africa became drier? What, then, could have led to the extinction of Paranthropus robustus?

Lake Malawi lies to the northeast of the catchment basin of the Limpopo, one of Africa’s largest rivers. In Maputo Bay (Mozambique) the Limpopo flows into the Indian Ocean. The sediment core – the archive investigated by the researchers for this study – was taken from here.

Due to the continuous deposition, marine sediment cores allow the researchers to observe a sequence of climate changes over long periods of time. Microfossils and pollen from the land are also washed into the ocean by the Limpopo and deposited on the ocean floor.

This allows the findings from sites on land to be compared to their temporal development. As Dr. Lydie Dupont from MARUM notes, data from the land often only encompass short time periods, but they can provide important clues about the occurrences of species and their food sources. With the help of the sediment cores, the scientists had access to a climate record spanning about 2.14 million years.

The team combined very different kinds of analyses. Hydrogen as well as carbon isotopes of molecular plant fossils were investigated, and these were compared with the results of pollen analyses and element compositions. Each analysis alone can be interpreted in different ways. “Only through the comprehensive consideration could a coherent picture of the climate in the Limpopo region be reconstructed,” says Lydie Dupont.

Furthermore, the team determined the changes in sea-surface temperatures for this time period, allowing them to assess the influence of the ocean on the climate on land. Combining their results with data from the literature, the researchers were able to draw conclusions about the causes of climate changes that occurred during the time when Paranthropus robustus lived and ultimately died out.

The combined results from Limpopo portray a different picture than the study from Lake Malawi. From about 1 million years ago to 600,000 years ago climate became substantially more arid. At the same time, climate variability increased noticeably.

“What eventually led to the extinction is difficult to say,” says Dr. Enno Schefuß. Climatic changes always lead to adaptations by organisms – including adaptation of their feeding habits. If the conditions change extremely rapidly over a short period of time, organisms are less apt to adjust evolutionarily to the altered circumstances. According to the findings in the Limpopo region, Paranthropus robustus died out 600,000 years ago.

Original publication:
Thibaut Caley, Thomas Extier, James A. Collins, Enno Schefuß, Lydie Dupont, Bruno Malaizé, Linda Rossignol, Antoine Souron, Erin L. McClymont, Francisco J. Jimenez-Espejo, Carmen García-Comas, Frédérique Eynaud, Philippe Martinez, Didier M. Roche, Stephan J. Jorry, Karine Charlier, Mélanie Wary, Pierre-Yves Gourves, Isabelle Billy and Jacques Giraudeau: A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa. Nature, 2018. DOI: 10.1038/s41586-018-0309-6

Contact:
Dr. Enno Schefuß
Phone: +49 421 218 65526
E-Mail: eschefuss@marum.de

Dr. Lydie Dupont
Phone: +49 421 218 65532
E-Mail: ldupont@marum.de

Using state-of-the-art methods and through participation in international projects, MARUM investigates the role of the ocean in the Earth’s system, particularly with respect to global change. It quantifies the interactions between geological and biological processes in the ocean and contributes to the sustainable use of the oceans. MARUM comprises the DFG Research Centre and the Excellence Cluster “The Oceans in the Earth System”.

More information:
Ulrike Prange
MARUM Press and Public Relations
Phone: 0049 421 218 65540
Email: medien@marum.de

Ulrike Prange | idw - Informationsdienst Wissenschaft

Further reports about: Lake Malawi MARUM Paranthropus climate changes sediment cores

More articles from Earth Sciences:

nachricht Charcoal: Major Missing Piece in the Global Carbon Cycle
10.07.2018 | Universität Zürich

nachricht Ocean acidification: Coral core reveals dropping pH values in South Pacific
06.07.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

Im Focus: Probing nobelium with laser light

Sizes and shapes of nuclei with more than 100 protons were so far experimentally inaccessible. Laser spectroscopy is an established technique in measuring fundamental properties of exotic atoms and their nuclei. For the first time, this technique was now extended to precisely measure the optical excitation of atomic levels in the atomic shell of three isotopes of the heavy element nobelium, which contain 102 protons in their nuclei and do not occur naturally. This was reported by an international team lead by scientists from GSI Helmholtzzentrum für Schwerionenforschung.

Nuclei of heavy elements can be produced at minute quantities of a few atoms per second in fusion reactions using powerful particle accelerators. The obtained...

Im Focus: Asymmetric plasmonic antennas deliver femtosecond pulses for fast optoelectronics

A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 terahertz. This range in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Nanotechnology to fight cancer: From diagnosis to therapy

28.06.2018 | Event News

Biological Transformation: nature as a driver of innovations in engineering and manufacturing

28.06.2018 | Event News

 
Latest News

Evolution and climate change in Southeast Africa

10.07.2018 | Earth Sciences

Brazil’s Forest Code can balance the needs of agriculture and the environment

10.07.2018 | Agricultural and Forestry Science

High-power thermoelectric generator utilizes thermal difference of only 5ºC

09.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>