Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence of carbonate minerals found on Mars: Warm and wet climate would have been favorable for life

14.06.2010
Mössbauer Group identifies carbonate mineral formation in the Columbia Hills – consistent with the reported findings for meteorite ALH 84001

Some four billion years ago, our neighbor planet Mars had a warm and wet climate and would thus have provided a much more favorable environment for the development of life than today.

This is the conclusion following a recent study undertaken with several instruments on one of NASA's Mars Exploration Rovers (MER), Spirit. The main body of evidence was provided by the 2006 survey results obtained by NASA's rover 'Spirit' in the Columbia Hills region of Mars using the Mössbauer spectrometer developed in Mainz.

"Working in collaboration with an international group, the Mössbauer team has now for the first time been able to demonstrate the presence of deposits of carbonate minerals in situ on the Martian surface. This is the kind of proof that we have long been looking for to support the hypothesis advanced some decades ago that the planet once had a warm and wet climate," explains Dr Göstar Klingelhöfer of Johannes Gutenberg University Mainz. The results of the study have now been published in the journal 'Science'.

During the project, the researchers worked on the assumption that, in order to have had a warmer and wetter climate during its early history, Mars would have to have had a much denser atmosphere with considerably higher levels of CO2 than today. This sort of atmosphere would result in the formation of rocks with high carbonate mineral content. Analyses conducted over a period of several years have enabled the Mössbauer Group to identify a rocky outcrop of just this kind on Mars that contains significant amounts of magnesium iron carbonate. "Although we were already aware that the data obtained from Columbia Hills was inconsistent with standard theories, we did not quite know how to interpret it," Klingelhöfer continues. His team developed the miniaturized Mössbauer spectrometer that is attached to the rover and is designed to analyze iron-containing minerals on the surface of Mars. Over the past several years, NASA scientist Richard Morris has been analyzing the results in a series of laboratory experiments. Findings reported by two other rover instruments – the alpha particle X-ray spectrometer developed by the Max Planck Institute for Chemistry in Mainz and a thermal emission spectrometer – corroborate the evidence: The rocky outcrop dubbed 'Comanche' consists of nearly 20 percent carbonates. Rocks with such a high content of carbonates can only have formed in the presence of large volumes of water with a more or less neutral pH in a dense, warm, moist CO2-rich atmosphere - conditions that would be ideal for life. "This carbonate is exactly what we have always been looking for," claims a happy Göstar Klingelhöfer in view of the findings, which demonstrate the presence of mainly magnesium iron carbonate and the silicate mineral olivine in the rocks. And Steve Squyres of Cornell University in Ithaca, New York, is equally enthusiastic: "This is one of the most significant findings by the rovers." Squyres is Principal Investigator of the Mars Exploration Rover Mission and co-author of the recent ‘Science’ article.

Incidentally, this composition is similar to that reported for the carbonate globules present in Mars meteorite ALH 84001 discovered in the Allan Hills in Antarctica. In the late 1990s, the Allan Hills meteorite made headline news worldwide when researchers claimed that certain structures within it may represent biological signatures. Like the Comanche outcrop in the Columbia Hills in the Martian Gusev crater, ALH 84001 is estimated to be some four billion years old. The scientists postulate that the Gusev rocks, with their significant 16 to 34 percent content of carbonates, were probably deposited from a carbonate-rich solution with a near neutral pH under hydrothermal conditions – similar to those obtained in the hot springs on Iceland and Spitzbergen – during a period of volcanic activity in the so-called Noachian epoch some 3.5 to 4.6 billion years ago.

Weitere Informationen:
http://www.uni-mainz.de/eng/13618.php
http://www.ak-klingelhoefer.chemie.uni-mainz.de
http://www.nasa.gov/mission_pages/mer/news/mer20100603.html
http://www.sciencemag.org/cgi/content/abstract/science.1189667

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>