Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European satellites provide new insight into ozone-depleting chemical species

27.02.2009
Using data from the MIPAS and GOME-2 satellite instruments, scientists have for the first time detected important bromine species in the atmosphere. These new measurements will help scientists to understand better sources of ozone-depleting species and to improve simulations of stratospheric ozone chemistry.

Despite the detection of bromine monoxide (BrO) in the atmosphere some 20 years ago, bromine nitrate (BrONO2) was first observed in 2008 when scientists from the Karlsruhe Institute of Technology discovered the gas’s weak signal with data from MIPAS (the Michelson Interferometer for Passive Atmospheric Sounding).

"By comparing the novel MIPAS BrONO2 dataset with model calculations and BrO measurements by SCIAMACHY on Envisat, our general understanding of stratospheric bromine chemistry has been clearly confirmed," said Michael Höpfner of Germany’s Karlsruhe Institute of Technology. "These new observations also enable an independent estimation of the total amount of bromine in the stratosphere, which is important for understanding the origins of stratospheric bromine."

The stratospheric ozone layer that protects life on Earth from harmful ultraviolet rays is vulnerable to certain chemicals in the atmosphere such as chlorine and bromine. In spite of its much smaller concentrations, bromine is actually, after chlorine, the second most important halogen species destroying ozone in the stratosphere.

Since chlorine levels in the stratosphere have been dropping since the ban on man-made chlorofluorocarbons, bromine will become even more important in stratospheric ozone chemistry. Bromine’s importance will increase in part because there are more natural sources, such as volcanoes, for bromine emissions than for chlorine.

Volcanoes have long been known to play an important role in influencing stratospheric ozone chemistry because of the gases and particles they shoot into the atmosphere. New findings from space suggest they are also a very important source of atmospheric bromine.

The reactive chemical bromine monoxide has been measured in a number of volcanic plumes around the globe, but until recently it had never been measured by a space instrument.

In August 2008, the Kasatochi Volcano in Alaska's Aleutian Islands erupted explosively, sending a cloud of volcanic ash and gas more than 11 km into the atmosphere.

The following day, scientists from the Brussels-based Belgian Institute for Space Aeronomy identified high bromine concentrations in the vicinity of the volcano with Envisat’s SCIAMACHY instrument and the Global Ozone Monitoring Experiment-2 (GOME-2) instrument aboard MetOp-A. (MetOp-A, developed by ESA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), is Europe's first polar-orbiting satellite dedicated to operational meteorology.)

"Because of the good regional coverage of the GOME-2 instrument, the transport of the Kasatochi BrO plume could be followed for six days after the eruption," Michel Van Roozendael from the Belgian Institute for Space Aeronomy said. "Using the Lagrangian dispersion model, results show that the volcanic BrO was directly injected into the upper troposphere/lower stratosphere at altitudes ranging from 8 - 12 km.

"The total mass of reactive bromine released in the atmosphere was estimated around 50 - 120 tonnes, which corresponds to approximately 25% of the previously estimated total annual mass of reactive bromine emitted by volcanic activity."

Mariangela D'Acunto | EurekAlert!
Further information:
http://www.esa.int
http://www.esa.int/esaEO/SEM5P3XX3RF_planet_0.html

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>