Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New equation of state of seawater

09.02.2009
Proposed new international 'equation of state' employs absolute over practical salinity to redefine thermodynamic equation of seawater after 30 years

Seawater is a complex, dynamic mixture of dissolved minerals, salts, and organic materials that despite scientists best efforts, presents difficulties in measuring its potential to contain and disperse energy. Like the water itself, the calculations scientists employ to measure seawater are fluid, undergoing significant revisions and clarifications over the years as research techniques and instrumentation continues to evolve.

For 30 years, scientists have relied on a series of equations called International Equation of State of Seawater – or EOS-80, a collective term representing more than three decades of oceanographic best practice information from the early 1980's to present. Now, based on new oceanographic research, scientists have begun adopting a fresh approach to seawater thermodynamics, based in part by the work of University of Miami (UM) researcher, Dr. Frank Millero. Referred to collectively as the "Thermodynamic Equation Of Seawater – 2010," or "TEOS-10" for short, a new set of highly accurate and comprehensive formulas are beginning to provide much-needed adjustments and clarifications to the widely used EOS-80, that may be accepted internationally as early as 2010.

A member of the original committee that established the EOS-80, and a major contributor to and publisher of its latest revisions, UM Rosenstiel School of Marine and Atmospheric Science Professor Millero, is a leading force in oceanic chemistry research. His work alongside scientists from the across the United States, Canada, Europe, Great Britain, Australia and China is helping to guide the comprehensive reevaluation and construction of a set of equations that may well usher in sweeping advancements in the fields of marine and atmospheric science.

The Practical Salinity Scale, or PSS-78, and the previous International Equation of State of Seawater, which expresses the density of seawater as a function of Practical Salinity, temperature and pressure, have served the oceanographic community well for three decades, along with a number of other equations formed to incorporate more accurate representations of seawater measurements and algorithms.

"With the advancements in high speed computer processing, and progress in other scientific disciplines, the need for a new equation of state was imminent," said Millero. "These developments, along with scientific demand for more accurate equations and the emphasis on the ocean as an integral part of the global heat engine, have lent weight to a series of recently published papers utilizing increasingly precise formulas that we are hoping will be adopted universally within the next year or so."

The new equation of state is a free energy function that can yield all the thermodynamic values of seawater of known temperature, salinity and pressure. This is more convenient than EOS-80 for modelers who examine the theoretical properties of seawater. Dr. Rainer Reistel, from the Leibniz Institute for Baltic Sea Research in Germany, is widely recognized as the pioneer in developing the new free energy function.

In 2005, the Scientific Committee on Oceanic Research (SCOR) and the International Association of Physical Sciences of the Ocean (IAPSO) established Working Group 127 on the "Thermodynamics and Equation of State of Seawater," or simply WG127. Since then this group has arrived at a series of algorithms that incorporate oceanography's best knowledge of seawater thermodynamics. The approach taken by WG127 has been to develop a Gibbs function from which all the thermodynamic properties of seawater can be derived by purely mathematical manipulations. This method ensures that the various thermodynamic properties are self-consistent and complete. Named for physical chemist G. N. Gibbs, who developed free energy equations that can be used to study the thermodynamic properties of fluids. The new equation of state is based on a Gibbs function for seawater from which all the thermophysical properties of seawater can be derived in a physically consistent manner.

"The Gibbs function is a function of Absolute Salinity, temperature and pressure, which is a major departure from present practice (EOS-80). The reason for preferring Absolute Salinity over Practical Salinity is because the thermodynamic properties of seawater are directly influenced by the mass of dissolved constituents, or Absolute Salinity, whereas Practical Salinity depends of conductivity," said Millero. "If the new approach to defining the thermodynamic properties of seawater is well received by the scientific community, we would hope that TEOS-10 will become the new internationally accepted definition of seawater by 2010."

While Practical Salinity will still be the salinity variable that is stored in national databases (much as in situ temperature is stored in these databases), it is the new Absolute Salinity that will be used in journal publications, numerical ocean models and inverse models (as temperature is not used now, but rather, potential temperature for these purposes). The main reason for adopting the new salinity variable is to allow for the spatial differences in seawater composition; this variable composition affects conductivity differently to how it affects factors such as density, enthalpy, entropy and more.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht Seismic study reveals huge amount of water dragged into Earth's interior
18.12.2018 | National Science Foundation

nachricht A damming trend
17.12.2018 | Michigan State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>