Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Environmental damage from fog reduction is observable from outer space, find hydrologists


IUPUI-led study is the first to find satellite data can detect fog's impact on vegetation levels under climate change

A new study led by ecohydrologists at IUPUI has shown for the first time that it's possible to use satellite data to measure the threat of climate change to ecological systems that depend on water from fog.

Two satellite images show vegetation change from fog in two areas of the Namib desert. The left image shows the areas during periods of lower fog; the right image shows the areas during periods of higher fog. Greener areas inside the squares indicate vegetation greening.

Image courtesy of Lixin Wang, Indiana University

The paper, published in the journal Geophysical Research Letters, presents the first clear evidence that the relationship between fog levels and vegetation status is measurable using remote sensing. The discovery opens up the potential to easily and rapidly assess fog's impact on ecological health across large land masses -- as compared to painstaking ground-level observation.

"It's never been shown before that you can observe the effect of fog on vegetation from outer space," said Lixin Wang, an associate professor in the School of Science at IUPUI, who is the senior author on the study. "The ability to use the satellite data for this purpose is a major technological advance."

The need to understand the relationship between fog and vegetation is urgent since environmental change is reducing fog levels across the globe. The shift most strongly affects regions that depend upon fog as a major source of water, including the redwood forests in California; the Atacama desert in Chile; and the Namib desert in Namibia, with the latter two currently recognized as World Heritage sites under the United Nations due to their ecological rarity.

"The loss of fog endangers plant and insect species in these regions, many of which don't exist elsewhere in the world," said Na Qiao, a visiting student at IUPUI, who is the study's first author. "The impact of fog loss on vegetation is already very clear. If we can couple this data with large-scale impact assessments based on satellite data, it could potentially influence environmental protection policies related to these regions."

The IUPUI-led study is based upon optical and microwave satellite data, along with information on fog levels from weather stations at two locations operated by the Gobabeb Namib Research Institute in the Namib desert. The satellite data was obtained from NASA and the U.S. Geological Survey. The fog readings were taken between 2015 and 2017.

Wang's work with the Gobabeb facility is supported under a National Science Foundation CAREER grant. At least once a year, he and student researchers, including both graduate and undergraduate students from IUPUI, travel to the remote facility -- a two-hour drive on a dirt road from the nearest city -- to conduct field research.

The study found a significant correlation between fog levels and vegetation status near both weather stations during the entire time of the study. Among other findings, the optical data from the site near the research facility revealed obvious signs of plant greening following fog, and up to 15 percent higher measures during periods of fog versus periods without fog.

Similar patterns were seen at the second site, located near a local rock formation. The microwave data also found significant correlation between fog and plant growth near the research facility, and up to 60 percent higher measures during periods of fog versus periods without fog.

The study's conclusions are based upon three methods of remotely measuring vegetation: two based upon optical data, which is sensitive to the vibrance of greens in plants, and a third based upon microwave data, which is sensitive to overall plant mass, including the amount of water in stems and leaves. Although observable by machines, the changes in vegetation color are faint enough to go undetected by the human eye.

Next, the team will build upon their current work to measure the effect of fog on vegetation over longer periods of time, which will assist with future predictions. Wang also aims to study the relationship in other regions, including the redwood forests in California.

"We didn't even know you could use satellite data to measure the impact of fog on vegetation until this study," he said. "If we can extend the period under investigation, that will show an even more robust relationship. If we have 10 years of data, for example, we can make future predictions about the strength of this relationship, and how this relationship has been changing over time due to climate change."


Additional authors were Wenzhe Jiao, a Ph.D. student at IUPUI, who made significant contributions to the satellite data processing, as well as Changping Huang and Lifu Zhang of the Chinese Academy of Science and Maggs-Kölling and Eugene Marais of the Gobabeb Namib Research Institute. Qiao is also a student at the Chinese Academy of Science.

IU Research

IU's world-class researchers have driven innovation and creative initiatives that matter for 200 years. From curing testicular cancer to collaborating with NASA to search for life on Mars, IU has earned its reputation as a world-class research institution. Supported by $680 million last year from our partners, IU researchers are building collaborations and uncovering new solutions that improve lives in Indiana and around the globe.

Media Contact

Kevin Fryling


Kevin Fryling | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Satellite data show severity of drought summers in 2018 and 2019
13.07.2020 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

nachricht NASA analyzes Tropical Cyclone Cristina's water vapor concentration
09.07.2020 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>