Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's oldest known impact crater found in Greenland

29.06.2012
A 100 kilometre-wide crater has been found in Greenland, the result of a massive asteroid or comet impact a billion years before any other known collision on Earth.

The spectacular craters on the Moon formed from impacts with asteroids and comets between 3 and 4 billion years ago. The early Earth, with its far greater gravitational mass, must have experienced even more collisions at this time – but the evidence has been eroded away or covered by younger rocks.

The previously oldest known crater on Earth formed 2 billion years ago and the chances of finding an even older impact were thought to be, literally, astronomically low.

Now, a team of scientists from the Geological Survey of Denmark and Greenland (GEUS) in Copenhagen, Cardiff University in Wales, Lund University in Sweden and the Institute of Planetary Science in Moscow has upset these odds. Following a detailed programme of fieldwork, funded by GEUS and the Danish 'Carlsbergfondet' (Carlsberg Foundation), the team have discovered the remains of a giant 3 billion year old impact near the Maniitsoq region of West Greenland.
"This single discovery means that we can study the effects of cratering on the Earth nearly a billion years further back in time than was possible before," according to Dr Iain McDonald of Cardiff University's School of Earth and Ocean Sciences, who was part of the team.

Finding the evidence was made all the harder because there is no obvious bowl-shaped crater left to find. Over the 3 billion years since the impact, the land has been eroded down to expose deeper crust 25 km below the original surface. All external parts of the impact structure have been removed, but the effects of the intense impact shock wave penetrated deep into the crust - far deeper than at any other known crater - and these remain visible.
However, because the effects of impact at these depths have never been observed before it has taken nearly three years of painstaking work to assemble all the key evidence. "The process was rather like a Sherlock Holmes story," said Dr McDonald. "We eliminated the impossible in terms of any conventional terrestrial processes, and were left with a giant impact as the only explanation for all of the facts."

Only around 180 impact craters have ever been discovered on Earth and around 30% of them contain important natural resources of minerals or oil and gas. The largest and oldest known crater prior to this study, the 300 kilometre wide Vredefort crater in South Africa, is 2 billion years in age and heavily eroded.
Dr McDonald added that "It has taken us nearly three years to convince our peers in the scientific community of this but the mining industry was far more receptive. A Canadian exploration company has been using the impact model to explore for deposits of nickel and platinum metals at Maniitsoq since the autumn of 2011."

The international team was led by Adam A. Garde, senior research scientist at GEUS. The first scientific paper documenting the discovery has just been published in the journal Earth and Planetary Science Letters.

Dr. Iain McDonald | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Earth Sciences:

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

nachricht Cause for variability in Arctic sea ice clarified
14.05.2019 | Max-Planck-Institut für Meteorologie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>