Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's crust melts easier than previously thought

20.03.2009
MU researchers found that strain heating can play an important role in crustal melting

A University of Missouri study published in Nature this week has found that the Earth's crust melts easier than previously thought.

In the study, researchers measured how well rocks conduct heat at different temperatures and found that as rocks get hotter in the Earth's crust, they become better insulators and poorer conductors. This finding provides insight into how magmas are formed and will lead to better models of continental collision and the formation of mountain belts.

"In the presence of external heat sources, rocks will heat up more efficiently than previously thought," said Alan Whittington, professor of geological sciences in the MU College of Arts and Science. "We applied our findings to computer models that predict what happens to rocks when they get buried and heat up in mountain belts, such as the Himalayas today or the Black Hills in South Dakota in the geologic past. We found that strain heating, caused by tectonic movements during mountain belt formation, quite easily triggers crustal melting."

In the study, researchers used a laser-based technique to determine how long it took heat to conduct through different rock samples. In all of the samples, thermal diffusivity, or how well a material conducts heat, decreased rapidly with increasing temperatures. Researchers found the thermal diffusivity of hot rocks and magmas to be half that of what had been previously assumed.

"Most crustal melting on the Earth comes from intrusions of hot basaltic magma from the Earth's mantle," said Peter Nabelek, professor of geological sciences in the MU College of Arts and Science. "The problem is that during continental collisions, we don't see intrusions of basaltic magma into continental crust. These experiments suggest that because of low thermal diffusivity, strain heating is much faster and more efficient, and once rocks get heated, they stay hotter for much longer. Of course, these processes take millions of years to occur and we can only simulate them on a computer. This new data will allow us to create computer models that more accurately represent processes that occur during continental collisions."

The study, "Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism," was published in this week's Nature and was co-authored by Whittington, Nabelek and Anne Hofmeister, a professor at Washington University. The National Science Foundation funded this research.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>