Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Much of the early methane rise can be attributed to the spreading of northern peatlands

14.01.2010
The surprising increase in methane concentrations millennia ago, identified in continental glacier studies, has puzzled researchers for a long time.

According to a strong theory, this would have resulted from the commencement of rice cultivation in East Asia. However, a study conducted at the University of Helsinki's Department of Environmental Sciences and the Department of Geosciences and Geography shows that the massive expanse of the northern peatlands occurred around 5000 years ago, coincident with rising atmospheric methane levels.

After water vapour and carbon dioxide, methane is the most significant greenhouse gas, resulting in about one fifth of atmospheric warming caused by humans. Methane emissions are mainly created by peatlands, animal husbandry, rice cultivation, landfill sites, fossil fuel production and biomass combustion.

Northern peatlands are immense sources of methane, but previous studies have argued them to have been established almost immediately after the Ice Age ended. Consequently, they could not explain the increase of methane, dated to have commenced thousands of years later, since the methane emissions of peatlands decrease as they age.

William Ruddiman, Professor Emeritus in environmental sciences at the University of Virginia, has presented a widely published theory according to which humanity started to affect the climate thousands of years ago, not just since the start of the industrial revolution. According to the theory, rice cultivation, commenced in East Asia already over 5,000 years ago, caused the declining methane amounts to again increase, which contributed to preventing the next ice age.

The timeframe of the spread of peatlands matches the increase in methane levels

The new study, conducted under the supervision of Professor Atte Korhola, explains the emergence of the peatlands in the northern hemisphere, and their development history, in a new way. The researchers compiled an extensive radiocarbon dating database concerning the bottom peat in peatlands. Based on over 3,000 dates, their statistical and location information-based analysis, it was identified that the expansion of northern peatlands significantly accelerated about 5,000 years ago. At the same time, the methane content in the atmosphere started to increase.

Peatland expansion resulted in the emergence of millions of square kilometres of young peatlands of the mineretrophic fen type, and they puffed large amounts of methane gas in to the air as the organic matter rotted. According to the study, the early increase in methane levels was mainly caused by natural reasons, and human operations are not necessarily required to explain it.

The expansion of peatlands was triggered by the climate turning moister and cooler, which caused the groundwater levels to rise, while accelerating peat build-up and growth. A similar methane peak may also emerge in the future if precipitation in the arctic areas increases as forecasted.

The study was published last week in the prestigious Quaternary Science Reviews series, and the study was conducted by Atte Korhola, Professor; Meri Ruppel, M.A.; and the docents Minna Väliranta, Tarmo Virtanen and Jan Weckström from the University of Helsinki's Environmental Change Research Unit (ECRU) and Heikki Seppä, Professor in the Department of Geosciences and Geography at the University of Helsinki.

For more information, please contact:

Atte Korhola, Professor
The Environmental Change Research Unit (ECRU),
Department of Environmental Sciences, University of Helsinki
Tel. +358 40 5360 357
atte.korhola@helsinki.fi
Original publication: Korhola, A., et al., The importance of northern peatland expansion to the late-Holocene rise of atmospheric methane,

Quaternary Science Reviews (2010), doi:10.1016/j.quascirev.2009.12.010

Professor Atte Korhola | EurekAlert!
Further information:
http://www.helsinki.fi

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>