Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dwarf Dunes Record Climate History in Desert Sand

03.05.2018

Wind-driven sand is understood to create ripples on a centimetre scale and dunes spanning tens of metres, but so-called megaripples of intermediate size have remained puzzling. A theory of aeolian sand sorting now fills the gap, suggesting that megaripples and similar structures seen on Mars might hold encrypted records of the local climate history.

Sandy deserts aren't smooth. Like water surfaces, they are decorated by tiny surface ripples and much larger waves, called dunes, excited by turbulent winds. Now, writing in Nature Physics, an international team of geomorphologists and physicists elucidates the physical mechanism creating a third type of sand wave, with no marine analogy.


Unexpected relationship: Megaripples and sand dunes

Foto: Dr. Hezi Yizhaq

These curious “megaripples” resemble large ripples but have long eluded a mechanistic understanding and clear phenomenological characterization. Not surprisingly—the authors say—as they are actually dwarf dunes.

The new perspective might be key to deciphering their morphological long-term memory of ambient soil and weather conditions, and provide interesting new directions for geomorphological analysis and remote sensing applications to related bedforms seen on Mars, for example.

The starting point of the study was a closer look at the conditions under which megaripples form. Turbulent winds not only create sand waves, they also sort grains by size. Fine grains advance quickly while coarser grains trail behind. For this reason, sand found in large dune fields—having been transported for miles by the wind—is typically composed of grains that are all about the same size.

In contrast, megaripples contain grains of all different sizes. Under erosive conditions, the fine grains leave while coarser grains, which are too heavy to be mobilized by the wind, gradually accumulate on the sand bed.

This sets off a special bimodal transport process, in which the impact of high flying fine grains helps the coarse grains to advance in tiny steps. Their drastically reduced hop length prompts a corresponding downsizing of the dunes they form.

As Marc Lämmel et al. now demonstrate, this new interpretation of megaripples as mini-dunes of coarse grains is supported not only by the known co-localization of megaripples and coarse grains. It is quantitatively corroborated by close morphological and dynamical similarities between megaripples and ordinary sand dunes, which had remained unnoticed because of the enormous difference in size.

An important implication of the new work is that megaripples are extraordinarily sensitive to fluctuations in grain-size and wind-strength. It explains why megaripples stop growing during periods of weak winds and quickly erode during storms. What has plagued systematic field studies in the past, now renders megaripples perfect candidates for retrodicting past weather and climate conditions.

How their morphology and grain composition encodes records of past sorting and growth phases reminds one of the growth rings in tree trunks. If judiciously interpreted, petrified or extraterrestrial megripples,
say, will reveal valuable information about the climate history.

While further research is needed to establish a reliable routine for deciphering the messages in the sand, nothing prevents you anymore from embarking on this endeavor yourself, equipped with spade and sieve, on your next beach or desert trip. Before you set off, here is the portable version of the theory for analyzing your data: megaripples are mini-dunes of mega-grains making mini-jumps.

ORIGINAL PUBLICATION:
Marc Lämmel, Anne Meiwald, Hezi Yizhaq, Haim Tsoar, Itzhak Katra, and
Klaus Kroy:

"Aeolian sand sorting and megaripple formation"
Nature Physics (2018) Advance Online Publication (AOP)

Contact:
Prof. Dr. Klaus Kroy
Institute for Theoretical Physics, Leipzig University, Germany
Telefon: +49 341 97-32436
E-Mail: klaus.kroy@itp.uni-leipzig.de

Weitere Informationen:

https://www.nature.com/articles/s41567-018-0106-z

Susann Huster | Universität Leipzig
Further information:
http://www.uni-leipzig.de

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>