Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dwarf Dunes Record Climate History in Desert Sand

03.05.2018

Wind-driven sand is understood to create ripples on a centimetre scale and dunes spanning tens of metres, but so-called megaripples of intermediate size have remained puzzling. A theory of aeolian sand sorting now fills the gap, suggesting that megaripples and similar structures seen on Mars might hold encrypted records of the local climate history.

Sandy deserts aren't smooth. Like water surfaces, they are decorated by tiny surface ripples and much larger waves, called dunes, excited by turbulent winds. Now, writing in Nature Physics, an international team of geomorphologists and physicists elucidates the physical mechanism creating a third type of sand wave, with no marine analogy.


Unexpected relationship: Megaripples and sand dunes

Foto: Dr. Hezi Yizhaq

These curious “megaripples” resemble large ripples but have long eluded a mechanistic understanding and clear phenomenological characterization. Not surprisingly—the authors say—as they are actually dwarf dunes.

The new perspective might be key to deciphering their morphological long-term memory of ambient soil and weather conditions, and provide interesting new directions for geomorphological analysis and remote sensing applications to related bedforms seen on Mars, for example.

The starting point of the study was a closer look at the conditions under which megaripples form. Turbulent winds not only create sand waves, they also sort grains by size. Fine grains advance quickly while coarser grains trail behind. For this reason, sand found in large dune fields—having been transported for miles by the wind—is typically composed of grains that are all about the same size.

In contrast, megaripples contain grains of all different sizes. Under erosive conditions, the fine grains leave while coarser grains, which are too heavy to be mobilized by the wind, gradually accumulate on the sand bed.

This sets off a special bimodal transport process, in which the impact of high flying fine grains helps the coarse grains to advance in tiny steps. Their drastically reduced hop length prompts a corresponding downsizing of the dunes they form.

As Marc Lämmel et al. now demonstrate, this new interpretation of megaripples as mini-dunes of coarse grains is supported not only by the known co-localization of megaripples and coarse grains. It is quantitatively corroborated by close morphological and dynamical similarities between megaripples and ordinary sand dunes, which had remained unnoticed because of the enormous difference in size.

An important implication of the new work is that megaripples are extraordinarily sensitive to fluctuations in grain-size and wind-strength. It explains why megaripples stop growing during periods of weak winds and quickly erode during storms. What has plagued systematic field studies in the past, now renders megaripples perfect candidates for retrodicting past weather and climate conditions.

How their morphology and grain composition encodes records of past sorting and growth phases reminds one of the growth rings in tree trunks. If judiciously interpreted, petrified or extraterrestrial megripples,
say, will reveal valuable information about the climate history.

While further research is needed to establish a reliable routine for deciphering the messages in the sand, nothing prevents you anymore from embarking on this endeavor yourself, equipped with spade and sieve, on your next beach or desert trip. Before you set off, here is the portable version of the theory for analyzing your data: megaripples are mini-dunes of mega-grains making mini-jumps.

ORIGINAL PUBLICATION:
Marc Lämmel, Anne Meiwald, Hezi Yizhaq, Haim Tsoar, Itzhak Katra, and
Klaus Kroy:

"Aeolian sand sorting and megaripple formation"
Nature Physics (2018) Advance Online Publication (AOP)

Contact:
Prof. Dr. Klaus Kroy
Institute for Theoretical Physics, Leipzig University, Germany
Telefon: +49 341 97-32436
E-Mail: klaus.kroy@itp.uni-leipzig.de

Weitere Informationen:

https://www.nature.com/articles/s41567-018-0106-z

Susann Huster | Universität Leipzig
Further information:
http://www.uni-leipzig.de

More articles from Earth Sciences:

nachricht Salish seafloor mapping identifies earthquake and tsunami risks
25.04.2019 | Seismological Society of America

nachricht Geomagnetic jerks finally reproduced and explained
23.04.2019 | CNRS

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>