Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drones Aid in Coral Reef Research

10.01.2017

Drones have often been used in civilian applications for filming and photography. However, the use of these unmanned aerial devices for research purposes is still in its infancy. An international team of scientists led by Elisa Casella of the Leibniz Centre for Tropical Marine Research (ZMT) has now developed a method to investigate the condition of coral reefs using drone technology. The researchers’ report about their system has now been published in the journal Coral Reefs.

Drones have often been used in civilian applications for filming and photography. However, the use of these unmanned aerial devices for research purposes is still in its infancy. An international team of scientists led by Elisa Casella of the Leibniz Centre for Tropical Marine Research (ZMT) has now developed a method to investigate the condition of coral reefs using drone technology. The researchers’ report about their system has now been published in the journal Coral Reefs.


Picture of the coral reef off Moorea taken by the drone

Photo: Elisa Casella, Leibniz Centre for Tropical Marine Research


Starting the drone; Moorea

Photo: Alessio Rovere, Leibniz Centre for Tropical Marine Research

Thanks to the small dimensions and improved steering functions of the devices as well as falling prices, many disciplines can now benefit from the use of drones. They open up entirely new perspectives for ecological research and environmental protection. For example, drones are already being used for mapping hard-to-reach areas or for the inventory of endangered animal species.

So far, drones have seldom been used to map marine ecosystems. However, the bird’s eye view offers great advantages. Image data can be captured for a large surface area of a coral reef with its structural characteristics where divers would otherwise have to spend days collecting data under water.

In Moorea, an island in the South Pacific that belongs to French Polynesia, the ZMT researchers tested their method in a shallow coral reef, in collaboration with colleagues from the Centre de Recherches Insulaires et Observatoire de l’Environnement, Moorea (CRIOBE). From a small boat they remotely steered a quadcopter drone equipped with a small camera in the direction of the reef. The small unmanned aerial vehicle flew over the ecosystem at an altitude of 30 meters. Every two seconds, the camera shot images from different positions. In the end the drone survey yielded more than 300 aerial photographs. On the basis of these data and by means of special software, the researchers created a 3D reconstruction of the coral reef.

“The detail accuracy of the images is astonishing,” said Elisa Casella. “We can even distinguish between different coral types. Satellite images, by contrast, have a much lower resolution.” The researchers were also able to cope with typical problems such as strong light reflections and optical distortions that occur at the air-water interface. “We went by boat on windless days into the reef and took the images when the sun was low in the horizon,” said Casella.

"This is a very elegant and time-saving method to get an impression of the condition and structure of a coral reef," said Sebastian Ferse, reef ecologist at the ZMT and co-author of the study. “If a reef has a very complex structure, it offers many different niches for its inhabitants, and the biomass there is correspondingly high.” The remote-controlled camera also provides information on how much a reef has been damaged by coral bleaching or dynamite fishing.

In the future, Ferse plans to use drones for his reef research in Indonesia. In addition, in certain areas of the reef, video cameras shall record the diversity of species and the behaviour of the reef fish. He wants to determine the so-called tipping point – when a reef structure becomes so damaged that the biodiversity decreases significantly. This information is essential to manage the reef or to establish protected areas.

Following this research, Elisa Casella will team up with the Sea Level and Coastal Changes group and with the Mangrove Ecology group of the ZMT to investigate the possibility to use drones for the multispectral mapping of mangroves in Fiji. The team wants to understand up to which point drones have an advantage over satellite imagery in providing data for environmental management.

Publication:
Casella, E., Collin, A., Harris, D., Ferse, S., Bejarano, S., Parravicini, V., Hench, J.L., Rovere, A., (2016, online first). Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs. DOI: 10.1007/s00338-016-1522-0.

Contact
Application of method in coral reef ecology
Dr. Sebastian Ferse
Leibniz Centre for Tropical Marine Research
Tel: 0421 / 23800-28
sebastian.ferse@leibniz-zmt.de

Method and technical details
Elisa Casella / Alessio Rovere (Interview only in Englisch)
Leibniz Centre for Tropical Marine Research
Tel. E. Casella: 0421 / 23800-56
Tel. A. Rovere: 0421 / 218 65771
elisa.casella@leibniz-zmt.de
alessio.rovere@leibniz-zmt.de

PR
Dr. Susanne Eickhoff
Leibniz Centre for Tropical Marine Research
Tel: 0421 – 23800 37
susanne.eickhoff@leibniz-zmt.de

About the Leibniz Centre for Tropical Marine Research
In research and education the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen is dedicated to the better understanding of tropical coastal ecosystems. As an interdisciplinary Leibniz institute the ZMT conducts research on the structure and functioning of tropical coastal ecosystems and their reaction to natural changes and human interactions. It aims to provide a scientific basis for the protection and sustainable use of these ecosystems. The ZMT works in close cooperation with partners in the tropics, where it supports capacity building and the development of infrastructures in the area of sustainable coastal zone management. The ZMT is a member of the Leibniz Association.

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.leibniz-zmt.de

More articles from Earth Sciences:

nachricht Solving fossil mystery could aid quest for ancient life on Mars
28.11.2019 | University of Edinburgh

nachricht Living at the edge of an active volcano: Risk from lava flows on Mount Etna
27.11.2019 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Harnessing the power of CRISPR in space and time

29.11.2019 | Life Sciences

When plants bloom

29.11.2019 | Life Sciences

New evolutionary insights into the early development of songbirds

29.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>