Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drones Aid in Coral Reef Research

10.01.2017

Drones have often been used in civilian applications for filming and photography. However, the use of these unmanned aerial devices for research purposes is still in its infancy. An international team of scientists led by Elisa Casella of the Leibniz Centre for Tropical Marine Research (ZMT) has now developed a method to investigate the condition of coral reefs using drone technology. The researchers’ report about their system has now been published in the journal Coral Reefs.

Drones have often been used in civilian applications for filming and photography. However, the use of these unmanned aerial devices for research purposes is still in its infancy. An international team of scientists led by Elisa Casella of the Leibniz Centre for Tropical Marine Research (ZMT) has now developed a method to investigate the condition of coral reefs using drone technology. The researchers’ report about their system has now been published in the journal Coral Reefs.


Picture of the coral reef off Moorea taken by the drone

Photo: Elisa Casella, Leibniz Centre for Tropical Marine Research


Starting the drone; Moorea

Photo: Alessio Rovere, Leibniz Centre for Tropical Marine Research

Thanks to the small dimensions and improved steering functions of the devices as well as falling prices, many disciplines can now benefit from the use of drones. They open up entirely new perspectives for ecological research and environmental protection. For example, drones are already being used for mapping hard-to-reach areas or for the inventory of endangered animal species.

So far, drones have seldom been used to map marine ecosystems. However, the bird’s eye view offers great advantages. Image data can be captured for a large surface area of a coral reef with its structural characteristics where divers would otherwise have to spend days collecting data under water.

In Moorea, an island in the South Pacific that belongs to French Polynesia, the ZMT researchers tested their method in a shallow coral reef, in collaboration with colleagues from the Centre de Recherches Insulaires et Observatoire de l’Environnement, Moorea (CRIOBE). From a small boat they remotely steered a quadcopter drone equipped with a small camera in the direction of the reef. The small unmanned aerial vehicle flew over the ecosystem at an altitude of 30 meters. Every two seconds, the camera shot images from different positions. In the end the drone survey yielded more than 300 aerial photographs. On the basis of these data and by means of special software, the researchers created a 3D reconstruction of the coral reef.

“The detail accuracy of the images is astonishing,” said Elisa Casella. “We can even distinguish between different coral types. Satellite images, by contrast, have a much lower resolution.” The researchers were also able to cope with typical problems such as strong light reflections and optical distortions that occur at the air-water interface. “We went by boat on windless days into the reef and took the images when the sun was low in the horizon,” said Casella.

"This is a very elegant and time-saving method to get an impression of the condition and structure of a coral reef," said Sebastian Ferse, reef ecologist at the ZMT and co-author of the study. “If a reef has a very complex structure, it offers many different niches for its inhabitants, and the biomass there is correspondingly high.” The remote-controlled camera also provides information on how much a reef has been damaged by coral bleaching or dynamite fishing.

In the future, Ferse plans to use drones for his reef research in Indonesia. In addition, in certain areas of the reef, video cameras shall record the diversity of species and the behaviour of the reef fish. He wants to determine the so-called tipping point – when a reef structure becomes so damaged that the biodiversity decreases significantly. This information is essential to manage the reef or to establish protected areas.

Following this research, Elisa Casella will team up with the Sea Level and Coastal Changes group and with the Mangrove Ecology group of the ZMT to investigate the possibility to use drones for the multispectral mapping of mangroves in Fiji. The team wants to understand up to which point drones have an advantage over satellite imagery in providing data for environmental management.

Publication:
Casella, E., Collin, A., Harris, D., Ferse, S., Bejarano, S., Parravicini, V., Hench, J.L., Rovere, A., (2016, online first). Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs. DOI: 10.1007/s00338-016-1522-0.

Contact
Application of method in coral reef ecology
Dr. Sebastian Ferse
Leibniz Centre for Tropical Marine Research
Tel: 0421 / 23800-28
sebastian.ferse@leibniz-zmt.de

Method and technical details
Elisa Casella / Alessio Rovere (Interview only in Englisch)
Leibniz Centre for Tropical Marine Research
Tel. E. Casella: 0421 / 23800-56
Tel. A. Rovere: 0421 / 218 65771
elisa.casella@leibniz-zmt.de
alessio.rovere@leibniz-zmt.de

PR
Dr. Susanne Eickhoff
Leibniz Centre for Tropical Marine Research
Tel: 0421 – 23800 37
susanne.eickhoff@leibniz-zmt.de

About the Leibniz Centre for Tropical Marine Research
In research and education the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen is dedicated to the better understanding of tropical coastal ecosystems. As an interdisciplinary Leibniz institute the ZMT conducts research on the structure and functioning of tropical coastal ecosystems and their reaction to natural changes and human interactions. It aims to provide a scientific basis for the protection and sustainable use of these ecosystems. The ZMT works in close cooperation with partners in the tropics, where it supports capacity building and the development of infrastructures in the area of sustainable coastal zone management. The ZMT is a member of the Leibniz Association.

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.leibniz-zmt.de

More articles from Earth Sciences:

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

nachricht The Antarctica Factor: model uncertainties reveal upcoming sea-level risk
14.02.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria

18.02.2020 | Life Sciences

First research results on the "spectacular meteorite fall" of Flensburg

18.02.2020 | Earth Sciences

Blood and sweat: Wearable medical sensors will get major sensitivity boost

18.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>