Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drastic Desertification

21.08.2012
Over the past 10,000 years, climate changes in the Dead Sea region have led to surprisingly swift desertification within mere decades.
This is what researchers from the University of Bonn and their Israeli colleagues found when analyzing pollen in sediments and fluctuations in sea levels, calling the findings 'dramatic.' They are presented in the current issue of the international geosciences journal "Quaternary Science Reviews," whose print version is published on 23 August.

The Dead Sea, a salt sea without an outlet, lies over 400 meters below sea level. Tourists like its high salt content because it increases their buoyancy. "For scientists, however, the Dead Sea is a popular archive that provides a diachronic view of its climate past," says Prof. Dr. Thomas Litt from the Steinmann-Institute for Geology, Mineralogy and Paleontology at the University of Bonn.

Using drilling cores from riparian lake sediments, paleontologists and meteorologists from the University of Bonn deduced the climate conditions of the past 10,000 years. This became possible because the Dead Sea level has sunk drastically over the past years, mostly because of increasing water withdrawals lowering the water supply.

Oldest pollen analysis

In collaboration with the GeoForschungsZentrum Potsdam (German Research Centre for Geosciences) and Israel's Geological Service, the researchers took a 21 m long sediment sample in the oasis Ein Gedi at the west bank of the Dead Sea. They then matched the fossil pollen to indicator plants for different levels of precipitation and temperature. Radiocarbon-dating was used to determine the age of the layers. "This allowed us to reconstruct the climate of the entire postglacial era," Prof. Litt reports. "This is the oldest pollen analysis that has been done on the Dead Sea to date."

In total, there were three different formations of vegetation around this salt sea. In moist phases, a lush, sclerophyll vegetation thrived as can be found today around the Mediterranean Sea. When the climate turned drier, steppe vegetation took over. Drier episodes yet were characterized by desert plants. The researchers found some rapid changes between moist and dry phases.

Transforming pollen data into climate information

The pollen data allows inferring what kinds of plants were growing at the corresponding times. Meteorologists from the University of Bonn took this paleontological data and converted it into climate information. Using statistical methods, they matched plant species with statistical parameters regarding temperature and precipitation that determine whether a certain plant can occur. "This allows us to make statements on the probable climate that prevailed during a certain period of time within the catchment area of the Dead Sea," reports Prof. Dr. Andreas Hense from the University of Bonn's Meteorological Institute.

The resilience of the resulting climate information was tested using the data on Dead Sea level fluctuations collected by their Israeli colleagues around Prof. Dr. Mordechai Stein from the Geological Services in Jerusalem. "The two independent data records corresponded very closely," explains Prof. Litt. "In the moist phases that were determined based on pollen analysis, our Israeli colleagues found that water levels were indeed rising in the Dead Sea, while they fell during dry episodes." This is plausible since the water level of a terminal lake without an outlet is exclusively determined by precipitation and evaporation.

Droughts led to the biblical exodus

According to the Bonn researchers' data, there were distinct dry phases particularly during the pottery Neolithic (about 7,500 to 6,500 years ago), as well as at the transition from the late Bronze Age to the early Iron Age (about 3,200 years ago). "Humans were also strongly affected by these climate changes," Prof. Litt summarizes the effects. The dry phases might have resulted in the Canaanites' urban culture collapsing while nomads invaded their area.

"At least, this is what the Old Testament refers to as the exodus of the Israelites to the Promised Land."

Dramatic results

In addition, this look back allows developing scenarios for potential future trends. "Our results are dramatic; they indicate how vulnerable the Dead Sea ecosystems are," says Prof. Litt. "They clearly show how surprisingly fast lush Mediterranean sclerophyll vegetation can morph into steppe or even desert vegetation within a few decades if it becomes drier." Back then, the consequences in terms of agriculture and feeding the population were most likely devastating. The researchers want to probe even further back into the climate past of the region around the Dead Sea by drilling even deeper.

Publication: Holocene climate variability in the Levant from the Dead Sea pollen record, Quaternary Science Reviews 49 (August 2012)

Contact:

Prof. Dr. Thomas Litt
Steinmann Institute for Geology, Mineralogy and Paleontology
Ph. 0228/732736
Email: t.litt@uni-bonn.de

Prof. Dr. Andreas Hense
Meteorological Institute
Ph.: 0228/735184
Email: ahense@uni-bonn.de

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de
http://www3.uni-bonn.de/Pressemitteilungen/207-2012
http://dx.doi.org/10.1016/j.quascirev.2012.06.012

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>