Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dirty pipeline: Methane from fracking sites can flow to abandoned wells, new study shows

20.10.2015

Emissions are unmeasured, affect debate over proposed EPA regulations

As debate roils over EPA regulations proposed this month limiting the release of the potent greenhouse gas methane during fracking operations, a new University of Vermont study funded by the National Science Foundation shows that abandoned oil and gas wells near fracking sites can be conduits for methane escape not currently being measured.


A fracking operation on the Marcellus Shale Formation in Pennsylvania is shown. New research shows that abandoned oil and gas wells near fracking sites can be conduits for methane emissions not currently being measured.

Credit: U.S. Geological Survey/public domain

The study, to be published in Water Resources Research on October 20, demonstrates that fractures in surrounding rock produced by the hydraulic fracturing process are able to connect to preexisting, abandoned oil and gas wells, common in fracking areas, which can provide a pathway to the surface for methane.

A recent paper published in the Proceedings of the National Academies of Science showed that methane release measured at abandoned wells near fracking sites can be significant but did not investigate how the process occurs.

"The debate over the new EPA rules needs to take into account the system that fracking operations are frequently part of, which includes a network of abandoned wells that can effectively pipeline methane to the surface," said the new paper's lead author, James Montague, an environmental engineering doctoral student at the University of Vermont, who co-wrote the paper with George Pinder, professor of environmental engineering at the university.

The study focused on an area in New York State underlain by the Marcellus Shale formation, which had been fracked until a ban went into effect in the state in the summer of 2015.

The formation, composed of layers of shale and hydrocarbons, is beneath land that has been the site of conventional oil and gas drilling since the 1880s, when American oil companies first began operating.

About 40,000 existing wells in New York, 30,000 of them located within the footprint of the Marcellus formation, are documented by the state's Department of Environmental Conservation. But the department estimates that 70,000 wells in all have been drilled.

Because the location of so many wells is not known - a common phenomenon in many regions where fracking takes place - the study uses a mathematical model to predict the likelihood that the hydraulically induced fractures of a randomly placed new well would connect to an existing wellbore.

The model put the probability that new fracking-induced fractures in the Marcellus formation would connect to an existing well bore at between .03 percent and 3 percent.

But industry-sponsored information made public since the paper was published vastly increased assumptions about the area impacted by a set of six to eight fracking wells known as a well pad - to two square miles -- increasing the probabilities cited in the paper by a factor of 10 or more.

While all fracking sites are different, most have a similar enough hydrocarbon profile that they attracted conventional oil and gas drilling in the past and most, like the Marcellus, have a large number of abandoned wells, many with unknown locations.

Not all abandoned wells provide a pathway to surface for methane. Only those that are damaged, largely when the concrete that buffers the well from the surrounding earth loses integrity, can act as a conduit.

But even a small percentage of damaged wellbores, given the large number of abandoned wells, can potentially pose an environmental risk, Pinder said.

Media Contact

Jeff Wakefield
jeffrey.wakefield@uvm.edu
802-578-8830

 @uvmvermont

http://www.uvm.edu 

Jeff Wakefield | EurekAlert!

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>