Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

Microscopic image of a siliceous sponge spilule, preserved in a Cambrian shale. The width of the picture is 5 mm. GFZ/M. Tatzel

About 550 million years ago, almost all of todays’ living animal phyla appeared on Earth within just a few million years. This expansion of metazoans is also known as the ‘Cambrian explosion’ and marks the beginning of the “Phanerozoic”, the era of ‘visible life’.

The causes of this most dramatic ecosystem change on our planet are still disputed. Geologists know that during this time, the concentration of free oxygen significantly increased in the atmosphere and the oceans. As metazoans (multicellular animals) need oxygen for breathing, this rise in oxygen levels was fundamental to their emergence. But what were the causes of this essential oxygen increase?

Scientists of the German Research Centre for Geosciences GFZ could show for the first time that marine sponges induced changes in the marine carbon and phosphorous cycles that caused a rise in seawater dissolved oxygen levels, providing the basis for the further expansion of metazoans. The study is published in the journal “Nature Communications”.

The GFZ-geochemists provided the evidence by means of a new method using stable silica isotopes – these subgroups of chemical elements that have different atomic masses. Siliceous sponges live on the seafloor and leave behind silicon-rich spicules (see photo) of their skeleton upon their death. However, these spicules are rarely preserved when old seafloor turns into rock.

Michael Tatzel and Friedhelm von Blanckenburg analysed silicon stable isotopes using a modern mass spectrometer to determine the abundance of siliceous sponges in sediments. They did so because silicon from these spicules is retained in shales and cherts (flintstones) and is enriched in “light” silicon-28 relative to silicon-30.

“Our reconstructions reveal an increasing abundance of siliceous sponges in sediments that were deposited between the Precambrian and the Cambrian on the continental slope of todays’ Yangtze Platform in South China”, says lead author Michael Tatzel.

But how does increasing sponge abundance relate to oxygen? Michael Tatzel investigated a multitude of geochemical indicators that react sensitively to the amount of oxygen dissolved in seawater. He found that simultaneously with sponges, the concentration of dissolved oxygen as well as the amount of organic carbon deposited in sediment increased. These fundamental changes resulted from the way sponges live.

Sponges extract organic carbon from seawater for feeding and could thus shift the oxidation of organic carbon to depth or even decreased oxidation. This change to the carbon cycle initiated a chain reaction: the increasing oxygen concentration promoted phosphate deposition and thus reduced phosphorous concentration in seawater and thereby the growth of algae that consume oxygen from seawater upon their death.

“This is, in our view, the first substantial evidence for the hypothesis that sponges functioned as ecosystem engineers and raised oxygen levels in seawater”, says Michael Tatzel. There is a good chance that this sponge-induced increase in oxygen levels exceeded the minimum requirement of multicellular life forms and thus triggered the ‘Cambrian explosion’.

Contact:
Dr. Michael, Tatzel, michael.tatzel@gfz-potsdam.de, 030-81044118
Prof. Friedhelm von Blanckenburg, fvb@gfz-potsdam.de, 0331-2882850

Original study: Tatzel, M., von Blanckenburg, F., Oelze, M., Bouchez, J., Hippler, D., 2017. Late Neoproterozoic seawater oxygenation by siliceous sponges. Nature Communications. DOI: 10.1038/s41467-017-00586-5

Media Contact

Ralf Nestler Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

More Information:

http://www.gfz-potsdam.de/

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors