Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017

Sponges as “water cleaner” raised dissolved oxygen concentrations of seawater, which was necessary for the appearance of animals 550 million years ago

About 550 million years ago, almost all of todays’ living animal phyla appeared on Earth within just a few million years. This expansion of metazoans is also known as the ‘Cambrian explosion’ and marks the beginning of the “Phanerozoic”, the era of ‘visible life’.


Microscopic image of a siliceous sponge spilule, preserved in a Cambrian shale. The width of the picture is 5 mm.

GFZ/M. Tatzel

The causes of this most dramatic ecosystem change on our planet are still disputed. Geologists know that during this time, the concentration of free oxygen significantly increased in the atmosphere and the oceans. As metazoans (multicellular animals) need oxygen for breathing, this rise in oxygen levels was fundamental to their emergence. But what were the causes of this essential oxygen increase?

Scientists of the German Research Centre for Geosciences GFZ could show for the first time that marine sponges induced changes in the marine carbon and phosphorous cycles that caused a rise in seawater dissolved oxygen levels, providing the basis for the further expansion of metazoans. The study is published in the journal “Nature Communications”.

The GFZ-geochemists provided the evidence by means of a new method using stable silica isotopes – these subgroups of chemical elements that have different atomic masses. Siliceous sponges live on the seafloor and leave behind silicon-rich spicules (see photo) of their skeleton upon their death. However, these spicules are rarely preserved when old seafloor turns into rock.

Michael Tatzel and Friedhelm von Blanckenburg analysed silicon stable isotopes using a modern mass spectrometer to determine the abundance of siliceous sponges in sediments. They did so because silicon from these spicules is retained in shales and cherts (flintstones) and is enriched in “light” silicon-28 relative to silicon-30.

“Our reconstructions reveal an increasing abundance of siliceous sponges in sediments that were deposited between the Precambrian and the Cambrian on the continental slope of todays’ Yangtze Platform in South China”, says lead author Michael Tatzel.

But how does increasing sponge abundance relate to oxygen? Michael Tatzel investigated a multitude of geochemical indicators that react sensitively to the amount of oxygen dissolved in seawater. He found that simultaneously with sponges, the concentration of dissolved oxygen as well as the amount of organic carbon deposited in sediment increased. These fundamental changes resulted from the way sponges live.

Sponges extract organic carbon from seawater for feeding and could thus shift the oxidation of organic carbon to depth or even decreased oxidation. This change to the carbon cycle initiated a chain reaction: the increasing oxygen concentration promoted phosphate deposition and thus reduced phosphorous concentration in seawater and thereby the growth of algae that consume oxygen from seawater upon their death.

“This is, in our view, the first substantial evidence for the hypothesis that sponges functioned as ecosystem engineers and raised oxygen levels in seawater”, says Michael Tatzel. There is a good chance that this sponge-induced increase in oxygen levels exceeded the minimum requirement of multicellular life forms and thus triggered the ‘Cambrian explosion’.

Contact:
Dr. Michael, Tatzel, michael.tatzel@gfz-potsdam.de, 030-81044118
Prof. Friedhelm von Blanckenburg, fvb@gfz-potsdam.de, 0331-2882850

Original study: Tatzel, M., von Blanckenburg, F., Oelze, M., Bouchez, J., Hippler, D., 2017. Late Neoproterozoic seawater oxygenation by siliceous sponges. Nature Communications. DOI: 10.1038/s41467-017-00586-5

Ralf Nestler | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht Low sea-ice cover in the Arctic
13.09.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht A precise chemical fingerprint of the Amazon
12.09.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>