Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diatom ooze sediments are a large marine mercury sink

27.07.2018

Mercury has been released by humans by multiple processes such as gold and silver mining and emissions to the atmosphere by coal burning, to name the most important ones. These processes have caused strong enrichment of mercury in the environment. The fate of mercury in the marine environment is barely understood. Scientists from Technical University of Braunschweig, Germany, investigated cores of biogenic sediments from marine Antarctica for accumulation of mercury in the past 8.000 years. They found out that microalgae accumulate high amounts of mercury in marine sediments and reveal onset and extent of global anthropogenic mercury emissions. Results have been published in SCIENCE.

Atmospheric derived mercury is transformed in the ocean to toxic methylmercury, which is enriched in fish. Large marine predators such as tuna are strongly affected and even humans through fish consumption.


Marine bottom sediments which consist mainly of diatom remains (diatom ooze).

Sara Zaferani/TU Braunschweig


Sampling of biogenic marine sediments.

Sara Zaferani/TU Braunschweig

Up to now, no data on mercury accumulation in deep sea sediments has been available. Scientists from TU Braunschweig have now investigated the role of microalgae for mercury accumulation in biogenic marine sediments.

The environmental geochemistry group at the Institute of Geoecology at TU Braunschweig under direction of Prof Harald Biester has investigated marine bottom sediments which consist mainly of diatom remains (diatom ooze) for the historical accumulation of mercury.

Those so called diatom ooze sediments are a result of algae blooms in the nutrient rich water of the Southern Ocean and form sediments of more than 100 m thickness with sedimentation rates of more than 1 cm per year.

With their analyses the scientists can show for the first time that diatom ooze accumulates large amounts of mercury in deep ocean sediments. Mercury accumulation rates derived from sediment cores from marine Antarctica are the highest ever reported for the marine environment.

Calculations based on the silicon/mercury ratio in the investigated sediment cores as well as literature data on global diatom ooze sedimentation reveal that between 9 and 20 percent of the annually emitted mercury from industrial sources could have been buried by diatoms alone. Moreover, diatom ooze could have been accumulated between 6,5 and 20 percent of all mercury emitted to the atmosphere during the industrial period. These results highlight the important role of algae for the accumulation of mercury in marine sediments.

The high resolution (10-40 years) historical mercury record (8.600 years) derived from Adélie Basin (marine Antarctica) sediments indicates that anthropogenic mercury pollution in Antarctica started with the beginning of the industrial period at around 1850 AD.

Earlier emissions, for example from colonial gold and silver mining in the 16th century where mercury was used for the extraction of the precious metals, could not be detected. Overall, the publication presents new important results for the global distribution of mercury emitted from anthropogenic sources and its enrichment in the marine food chain.

Wissenschaftliche Ansprechpartner:

Prof. Harald Biester
Leiter der Arbeitsgruppe Umweltgeochemie
Technische Universität Braunschweig
Institut für Geoökologie (IGÖ)
Langer Kamp 19c
38106 Braunschweig
Tel.: +49 (0) 531 391-7240
E-Mail: h.biester@tu-braunschweig.de
Web: https://www.tu-braunschweig.de/geooekologie/institut/geochemie

Originalpublikation:

Zaferani S, Pérez-Rodríguez M, Biester H (2018) Diatom ooze—A large marine mercury sink, Published Online 26 Jul 2018, DOI: https://doi.org/10.1126/science.aat2735

Janos Krüger | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Boreal forest fires could release deep soil carbon
22.08.2019 | NASA/Goddard Space Flight Center

nachricht An Ice Age savannah corridor let large mammals spread across Southeast Asia
22.08.2019 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

OHIO professor Hla develops robust molecular propeller for unidirectional rotations

22.08.2019 | Life Sciences

127-year-old physics problem solved

22.08.2019 | Physics and Astronomy

Physicists create world's smallest engine

22.08.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>