Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Determining the Earth’s gravity field more accurately than ever before

13.06.2019

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using satellite-supported recordings, they document the strong fluctuations and the associated spatial and seasonal distributions of mass on and in the Earth.


The graphic shows the ice-sheet loss in Greenland – based on GOCO06S

© IFG – TU Graz

From this, gravity field models can be calculated by which researchers can track rising sea levels or melting glaciers, investigate regional groundwater reserves more closely or analyse oceanic currents.

A team at the Institute of Geodesy of TU Graz has published a new combined gravity field model. The model, which is called GOCO06S, represents changes in mass on and under the Earth’s surface at unprecedented accuracy.

Model brings together different measuring processes

The name refers to the initiative itself: Gravity Observation Combination (GOCO), in whose framework the model was developed together with international partners. The consortium combines 1.16 billion measurements recorded by 19 satellites. “Due to the combination of data, the strengths of the individual measurement methods can be taken advantage of to the best of our ability.

This makes it possible for us to detect changes in the gravity field on a scale of one millionth of the mean force of gravity [Note: 9.81m/s2],” explains Torsten Mayer-Gürr, head of the Working Group of Theoretical Geodesy and Satellite Geodesy at TU Graz’s Institute of Geodesy. To achieve consistent global accuracy, it was decided to do without terrestrial data. Compared to the previous model, results have been improved by 25 percent.

The working group is occupied with determining the temporal changes in the Earth’s gravity and the evaluation of gravity measurements. The Graz team processes data from satellite missions and makes available gravity field solutions to the scientific community. “Our models are also used, for instance, in research into flood events,” says Mayer-Gürr, naming one particular field of activity.

About the Gravity Observation Combination initiative

The GOCO initiative has been around since 2009. It’s aim is to calculate high-precision and high-resolution global gravity field models through the combination of many different data sources. In 2010, the world’s first combination solution from the GRACE and GOCE missions was able to be calculated using the GOCO01s model.

This was followed by the successor models GOCO02s (2011), GOCO03s (2012) and GOCO05s (2015). The latest model generation GOCO06s combines data from GRACE, GOCE and the kinematic low-Earth-orbit satellites CHAMP, SWARM, TerraSAR-X, TanDEM-X and the laser satellites LAGEOS1/2, Ajisai, Stella, Starlette, LARES, LARETS, Etalon1/2 and BLITS.

GOCO cooperation partners:

Institute of Astronomical and Physical Geodesy, TU München
Institute of Geodesy and Geoinformation, University of Bonn
Institute of Geodesy of TU Graz – Working Group Theoretical Geodesy and Satellite Geodesy
Space Research Institution (IWF), Austrian Academy of Sciences
Astronomical Institute, University of Bern

This research area is anchored in the Field of Expertise “Sustainable Systems”, one of five strategic foci of TU Graz.

Wissenschaftliche Ansprechpartner:

Torsten MAYER-GÜRR
Univ.-Prof. Dr.-Ing.
TU Graz | Institute of Geodesy, Working Group Theoretical Geodesy and Satellite Geodesy
Steyrergasse 30/III, 8010 Graz
Tel. +43 316 873 6359
mayer-guerr@tugraz.at
ifg.tugraz.at

Weitere Informationen:

https://www.tugraz.at/institutes/ifg/downloads/gravity-field-models/goco-series/ (Further information on the GOCO-Project)

https://www.bgu.tum.de/en/iapg/welcome/?tx_curlcontent_pi1%5Bc2825%5D=46

https://www.igg.uni-bonn.de/en?set_language=en

https://www.tugraz.at/institute/ifg/research/theoretical-geodesy-and-satellite-g...

https://www.iwf.oeaw.ac.at/en/home/

http://www.aiub.unibe.ch/index_eng.html

Mag. Christoph Pelzl | Technische Universität Graz

Further reports about: Earth’s surface GOCE gravity rising sea levels satellites sea levels

More articles from Earth Sciences:

nachricht Boreal forest fires could release deep soil carbon
22.08.2019 | NASA/Goddard Space Flight Center

nachricht An Ice Age savannah corridor let large mammals spread across Southeast Asia
22.08.2019 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>