Each degree of global warming might ultimately raise global sea levels by more than 2 meters

Each degree of global warming is likely to raise sea level by more than 2 meters in the future, a study now published in the Proceedings of the National Academy of Sciences shows.

While thermal expansion of the ocean and melting mountain glaciers are the most important factors causing sea-level change today, the Greenland and Antarctic ice sheets will be the dominant contributors within the next two millennia, according to the findings. Half of that rise might come from ice-loss in Antarctica which is currently contributing less than 10 percent to global sea-level rise.

“CO2, once emitted by burning fossil fuels, stays an awful long time in the atmosphere,” says Anders Levermann, lead author of the study and research domain co-chair at the Potsdam Institute for Climate Impact Research. “Consequently, the warming it causes also persists.” The oceans and ice sheets are slow in responding, simply because of their enormous mass, which is why observed sea-level rise is now measured in millimeters per year. “The problem is: once heated out of balance, they simply don’t stop,” says Levermann. “We’re confident that our estimate is robust because of the combination of physics and data that we use.”

The study is the first to combine evidence from early Earth’s climate history with comprehensive computer simulations using physical models of all four major contributors to long-term global sea-level rise. During the 20th century, sea level rose by about 0.2 meters, and it is projected to rise by significantly less than two meters by 2100 even for the strongest scenarios considered. At the same time, past climate records, which average sea-level and temperature changes over a long time, suggest much higher sea levels during periods of Earth history that were warmer than present.

For the study now published, the international team of scientists used data from sediments from the bottom of the sea and ancient raised shorelines found on various coastlines around the world. All the models are based on fundamental physical laws. “The Antarctic computer simulations were able to simulate the past five million years of ice history, and the other two ice models were directly calibrated against observational data – which in combination makes the scientists confident that these models are correctly estimating the future evolution of long-term sea-level rise,” says Peter Clark, a paleo-climatologist at Oregon State University and co-author on the study. While it remains a challenge to simulate rapid ice-loss from Greenland and Antarctica, the models are able to capture ice loss that occurs on long time scales where a lot of the small rapid motion averages out.

If global mean temperature rises by 4 degrees compared to pre-industrial times, which in a business-as-usual scenario is projected to happen within less than a century, the Antarctic ice sheet will contribute about 50 percent of sea-level rise over the next two millennia. Greenland will add another 25 percent to the total sea-level rise, while the thermal expansion of the oceans’ water, currently the largest component of sea-level rise, will contribute about 20 percent, and the contribution from mountain glaciers will decline to less than 5 percent, mostly because many of them will shrink to a minimum.

“Continuous sea-level rise is something we cannot avoid unless global temperatures go down again,” concludes Levermann. “Thus we can be absolutely certain that we need to adapt. Sea-level rise might be slow on time scales on which we elect governments, but it is inevitable and therefore highly relevant for almost everything we build along our coastlines, for many generations to come.”

Article: Levermann, A., Clark, P., Marzeion, B., Milne, G., Pollard, D., Radic, V., Robinson, A. (2013): The multimillennial sea-level commitment of global warming. Proceedings of the National Academy of Sciences (early online edition) [DOI: 10.1073/pnas.1219414110 ]

Weblink to the article once it is published: www.pnas.org/cgi/doi/10.1073/pnas.1219414110

Weblink to the article in open access once it is published: http://www.pnas.org/content/early/recent

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Weitere Informationen:
http://www.pnas.org/cgi/doi/10.1073/pnas.1219414110
(Weblink to the article once it is published)
http://www.pnas.org/content/early/recent
(Weblink to the article in open access once it is published)

Media Contact

Sarah Messina PIK Pressestelle

More Information:

http://www.pik-potsdam.de

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors