Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Each degree of global warming might ultimately raise global sea levels by more than 2 meters

16.07.2013
Greenhouse gases emitted today will cause sea level to rise for centuries to come.

Each degree of global warming is likely to raise sea level by more than 2 meters in the future, a study now published in the Proceedings of the National Academy of Sciences shows.

While thermal expansion of the ocean and melting mountain glaciers are the most important factors causing sea-level change today, the Greenland and Antarctic ice sheets will be the dominant contributors within the next two millennia, according to the findings. Half of that rise might come from ice-loss in Antarctica which is currently contributing less than 10 percent to global sea-level rise.

“CO2, once emitted by burning fossil fuels, stays an awful long time in the atmosphere,” says Anders Levermann, lead author of the study and research domain co-chair at the Potsdam Institute for Climate Impact Research. “Consequently, the warming it causes also persists.” The oceans and ice sheets are slow in responding, simply because of their enormous mass, which is why observed sea-level rise is now measured in millimeters per year. “The problem is: once heated out of balance, they simply don’t stop,” says Levermann. “We’re confident that our estimate is robust because of the combination of physics and data that we use.”

The study is the first to combine evidence from early Earth’s climate history with comprehensive computer simulations using physical models of all four major contributors to long-term global sea-level rise. During the 20th century, sea level rose by about 0.2 meters, and it is projected to rise by significantly less than two meters by 2100 even for the strongest scenarios considered. At the same time, past climate records, which average sea-level and temperature changes over a long time, suggest much higher sea levels during periods of Earth history that were warmer than present.

For the study now published, the international team of scientists used data from sediments from the bottom of the sea and ancient raised shorelines found on various coastlines around the world. All the models are based on fundamental physical laws. “The Antarctic computer simulations were able to simulate the past five million years of ice history, and the other two ice models were directly calibrated against observational data – which in combination makes the scientists confident that these models are correctly estimating the future evolution of long-term sea-level rise,” says Peter Clark, a paleo-climatologist at Oregon State University and co-author on the study. While it remains a challenge to simulate rapid ice-loss from Greenland and Antarctica, the models are able to capture ice loss that occurs on long time scales where a lot of the small rapid motion averages out.

If global mean temperature rises by 4 degrees compared to pre-industrial times, which in a business-as-usual scenario is projected to happen within less than a century, the Antarctic ice sheet will contribute about 50 percent of sea-level rise over the next two millennia. Greenland will add another 25 percent to the total sea-level rise, while the thermal expansion of the oceans’ water, currently the largest component of sea-level rise, will contribute about 20 percent, and the contribution from mountain glaciers will decline to less than 5 percent, mostly because many of them will shrink to a minimum.

“Continuous sea-level rise is something we cannot avoid unless global temperatures go down again,” concludes Levermann. “Thus we can be absolutely certain that we need to adapt. Sea-level rise might be slow on time scales on which we elect governments, but it is inevitable and therefore highly relevant for almost everything we build along our coastlines, for many generations to come.”

Article: Levermann, A., Clark, P., Marzeion, B., Milne, G., Pollard, D., Radic, V., Robinson, A. (2013): The multimillennial sea-level commitment of global warming. Proceedings of the National Academy of Sciences (early online edition) [DOI: 10.1073/pnas.1219414110 ]

Weblink to the article once it is published: www.pnas.org/cgi/doi/10.1073/pnas.1219414110

Weblink to the article in open access once it is published: http://www.pnas.org/content/early/recent

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Weitere Informationen:
http://www.pnas.org/cgi/doi/10.1073/pnas.1219414110
(Weblink to the article once it is published)
http://www.pnas.org/content/early/recent
(Weblink to the article in open access once it is published)

Sarah Messina | PIK Pressestelle
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>