Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep recycling in the Earth faster than thought

11.08.2011
Sunken ocean crust resurfaces from Earth’s mantle after only 500 million years.

The recycling of the Earth´s crust in volcanoes happens much faster than scientists have previously assumed. Rock of the ocean crust, which sinks deep into the earth due to the movement of tectonic plates, reemerges through volcanic eruptions after around 500 million years. Researchers from the Max Planck Institute for Chemistry in Mainz obtained this result using volcanic rock samples. Previously, geologists thought this process would take about two billion years.


Olivine crystals from Mauna Loa volcano, Hawaii. The brown ovals are solidified, glassy inclusions trapped as droplets of melt by the growing olivine crystal. They contain strontium isotope ratios which are inherited from 500 million year old seawater. The black dots are gas inclusions.
Image: Sobolev, Max Planck Institute for Chemistry.

Virtually all of the ocean islands are volcanoes. Several of them, such as Hawaii, originate from the lowest part of the mantle. This geological process is similar to the movement of colored liquids in a lava lamp: hot rock rises in cylindrical columns, the so-called mantle plumes, from a depth of nearly 3000 kilometers. Near the surface, it melts, because the pressure is reduced, and forms volcanoes. The plume originates from former ocean crust which early in the Earth´s history sank to the bottom of the mantle. Previously, scientists had assumed that this recycling took about two billion years.

The chemical analysis of tiny glassy inclusions in olivine crystals from basaltic lava on Mauna Loa volcano in Hawaii has now surprised geologists: the entire recycling process requires at most half a billion years, four times faster than previously thought.

The microscopically small inclusions in the volcanic rock contain trace elements originally dissolved in seawater, and this allows the recycling process to be dated. Before the old ocean crust sinks into the mantle, it soaks up seawater, which leaves tell-tale trace elements in the rock. The age is revealed by the isotopic ratio of strontium which changes with time. Strontium is a chemical element, which occurs in trace amounts in sea water. The isotopes of chemical elements have the same number of protons but different numbers of neutrons. Mainz scientists developed a special laser mass spectrometry method which allowed the detection of isotopes of strontium in extremely small quantities.

To their surprise, the Max Planck researchers found residues of sea water with an unexpected strontium isotope ratio in the samples, which suggested an age of less than 500 million years for the inclusions. Therefore the rock material forming the Hawaiian basalts must be younger as previously thought.

"Apparently strontium from sea water has reached deep in the Earth´s mantle, and reemerged after only half a billion years, in Hawaiian volcano lavas," says Klaus Jochum, co-author of the publication. "This discovery was a huge surprise for us."

Another surprise for the scientists was the tremendous variation of strontium isotope ratios found in the melt inclusions in olivine from the single lava sample. “This variation is much larger than the known range for all Hawaiian lavas”, says Alexander Sobolev. “This finding suggests that the mantle is far more chemically heterogeneous on a small spatial scale than we thought before.” This heterogeneity is preserved only by melt inclusions but is completely obliterated in the lavas because of their complete mixing.

Sobolev, Jochum and their colleagues expect to obtain similar results for other volcanoes and therefore be able to determine the recycling age of the ocean crust more precisely.

The Max Planck Institute for Chemistry
Around 260 people work at the Max Planck Institute for Chemistry, researching the earth and its environment at various levels from nanoparticles to planets and from ecosystem dynamics to global climate change. There are three departments studying the earth system in field studies, under lab conditions and with the aid of computer-assisted modeling. The institute is helping develop our understanding of the earth's natural resources and providing the solutions for sustainable use of our planet and environmental protection. The institute's International Research School and E-learning program are an active contribution to scientific education. The Max Planck Institute for Chemistry is actively involved in the event program of the City of Science in Mainz in 2011. Next year the Institute celebrates its´ 100th anniversary.

More Information: http://www.mpic.de

Publication:
Alexander V. Sobolev, Albrecht W. Hofmann, Klaus Peter Jochum, Dmitry V. Kuzmin & Brigitte Stoll
A young source for the Hawaiian plume
Nature, 10 August, 2011
Contact:
Prof. Dr. Alexander Sobolev
Max Planck Institute for Chemistry, Mainz
Phone: +49 6131-305 609
E-mail: alexander.sobolev@mpic.de
Dr. Klaus Jochum
Max Planck Institute for Chemistry, Mainz
Phone: +49 6131-305 216
E-mail: k.jochum@mpic.de

Dr. Wolfgang Huisl | Max-Planck-Institut
Further information:
http://www.mpic.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>